In this study, we explore quantitative correlates of qualitative human expert perception. We discover that current quality metrics and loss functions, considered for biomedical image segmentation tasks, correlate moderately with segmentation quality assessment by experts, especially for small yet clinically relevant structures, such as the enhancing tumor in brain glioma. We propose a method employing classical statistics and experimental psychology to create complementary compound loss functions for modern deep learning methods, towards achieving a better fit with human quality assessment. When training a CNN for delineating adult brain tumor in MR images, all four proposed loss contributed equally as senior authors
Although the segmentation of brain structures in ultrasound helps initialize image based registration, assist brain shift compensation, and provides interventional decision support, the task of segmenting grey and white matter in cranial ultrasound is very challenging and has not been addressed yet. We train a multi-scale fully convolutional neural network simultaneously for two classes in order to segment real clinical 3D ultrasound data. Parallel pathways working at different levels of resolution account for high frequency speckle noise and global 3D image features. To ensure reproducibility, the publicly available RESECT dataset is utilized for training and cross-validation. Due to the absence of a ground truth, we train with weakly annotated label. We implement label transfer from MRI to US, which is prone to a residual but inevitable registration error. To further improve results, we perform transfer learning using synthetic US data. The resulting method leads to excellent Dice scores of 0.7080, 0.8402 and 0.9315 for grey matter, white matter and background. Our proposed methodology sets an unparalleled standard for white and grey matter segmentation in 3D intracranial ultrasound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.