Acute promyelocytic leukemia (APL) is due to a chromosomal t(15;17) translocation which involves a novel human gene, Myl, (also named PML) and the retinoic acid (RA) receptor alpha (RAR‐alpha) gene. We report here the characterization of Myl and of the reciprocal MylRAR (PMLRAR) and RARMyl (RARPML) fusion transcripts which are found in two classes of APL patients. Myl displays similarities with a new family of proteins of which some members are fused to protooncogenes in the transforming proteins RFP‐ret and T18. The speckled nuclear localization of Myl, as well as its sequence homology with the 52 kDa component of the RO/SSA ribonucleoprotein particle, suggest that Myl may be present in a ribonucleoprotein complex. In contrast to both Myl and RAR‐alpha whose localization is essentially nuclear in the presence or absence of RA, MylRAR which is largely cytoplasmic in the absence of RA appears to be translocated to the nucleus in the presence of RA. Myl and MylRAR can associate in vitro and this association is mediated by a coiled coil in the Myl sequence. In vivo this association results in a colocalization of Myl and MylRAR which is identical to that of MylRAR alone. Studies of activation of transcription from the promoters of several RA target genes indicate that MylRARs have altered transcription activation properties when compared with RAR‐alpha. Most notably, MylRAR represses markedly the activity of some RA target promoters in the absence of RA. Western blot analyses of patient samples show that MylRAR is expressed to a much higher level than wild type RAR‐alpha originating from the normal allele. Taken together, these results suggest that MylRAR may interfere in a dominant manner with both Myl and RAR functions.
A motif essential for the transcriptional activation function 2 (AF‐2) present in the E region of retinoic acid receptor (RAR) alpha and 9‐cis retinoic acid receptor (RXR) alpha has been characterized as an amphipathic alpha‐helix whose main features are conserved between transcriptionally active members of the nuclear receptor superfamily. This conserved motif, which can activate autonomously in the absence of ligand in animal and yeast cells, can be swapped between nuclear receptors without affecting the ligand dependency for activation of transcription, thus indicating that a ligand‐dependent conformational change is necessary to reveal the AF‐2 activation potential within the E region of the nuclear receptor. Interestingly, we show that the precise nature of the direct repeat response element to which RAR/RXR heterodimers are bound can affect the activity of the AF‐2s of the heterodimeric partners, as well as the relative efficiency with which all‐trans and 9‐cis retinoic acids activate the RAR partner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.