Bisphosphonates (BPs) are the most commonly used medications for osteoporosis, but optimal duration of therapy is unknown. This ASBMR report provides guidance on BP therapy duration with a risk benefit perspective.
Two trials provided evidence for long-term BP use. In the Fracture Intervention Trial Long-term Extension (FLEX), postmenopausal women receiving alendronate for 10 years had fewer clinical vertebral fractures than those switched to placebo after 5 years. In the HORIZON extension, women who received 6 annual infusions of zoledronic acid had fewer morphometric vertebral fractures compared with those switched to placebo after 3 years. Low hip T-score between −2 and −2.5 in FLEX and below −2.5 in HORIZON extension predicted a beneficial response to continued therapy. Hence, the Task Force suggests that after 5 years of oral BP or 3 years of intravenous BP, women should be reassessed. Women with previous major osteoporotic fracture, those who fracture on therapy, or others at high risk should generally continue therapy for up to 10 years (oral) or 6 years (intravenous), with periodic risk-benefit evaluation. Older women, those with a low hip T-score or high fracture risk score are considered high risk. The risk of osteonecrosis of the jaw and atypical femoral fracture increases with BP therapy duration, but such rare events are far outweighed by fracture risk reduction with BPs in high risk patients. For women not at high fracture risk after 3–5 years of BP treatment, a drug holiday of 2–3 years can be considered, with periodic reassessment.
The algorithm provided for long term BP use is based on limited evidence in mostly Caucasian postmenopausal women and only for vertebral fracture reduction. It is probably applicable to men and patients with glucocorticoid-induced osteoporosis, with some adaptations. It is unlikely that future osteoporosis trials will provide data for formulating definitive recommendations.
Objective
To prospectively determine the capacity of measures of mediolateral (ML) protective stepping performance, maximum hip abduction torque, and trunk mobility, in order to predict the risk of falls among community-living older people.
Design
Cross-sectional study.
Setting
A balance and falls research laboratory.
Participants
Medically screened and functionally independent community-living older adult volunteers (N=51).
Interventions
Not applicable.
Main Outcome Measures
Measures included: (1) protective stepping responses: percentage of trials with multiple balance recovery steps and sidestep/crossover step recovery patterns, and first step length following motor-driven waist-pull perturbations of ML standing balance; (2) hip abduction strength and axial mobility: (3) peak isokinetic hip abduction joint torque and trunk functional axial rotation (FAR) range of motion; and (4) fall incidence: monthly mail-in reporting of fall occurrences with follow-up contact for 1 year post-testing. One- and 2-variable logistic regression analysis models determined which single and combined measures optimally predicted fall status.
Results
The single variable model with the strongest predictive value for falls was the use of multiple steps in all trials (100% multiple steps) (odds ratio, 6.2; P=.005). Two-variable models, including 100% multiple steps and either hip abduction torque or FAR variables, significantly improved fall prediction over 100% multiple steps alone. The hip abduction and FAR logistic regression optimally predicted fall status.
Conclusions
The findings identify new predictor variables for risk of falling that underscore the importance of dynamic balance recovery performance through ML stepping in relation to neuromusculoskeletal factors contributing to lateral balance stability. The results also highlight focused risk factors for falling that are amenable to clinical interventions for enhancing lateral balance function and preventing falls.
Older adults are more likely to fall upon initial, unexpected perturbation exposure, but, upon repeated exposure, healthy young and older adults rapidly learn to avoid falling at a similar rate. Healthy older adults appear fully capable of learning to better recover from or adjust to a perturbation through repeated exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.