The demand for healthy foods without artificial food additives is constantly increasing. Hence, natural food preservation methods using bioprotective cultures could be an alternative to chemical preservatives. Thus, the main purpose of this work was to screen the indigenous lactobacilli isolated from fermented cow milk for their safety and antifungal activity to select the safe strain with the strongest fungicidal properties for the development of bioprotective acid whey protein concentrate (AWPC) based fermentates and their coatings intended for fresh cheese quality maintenance. Therefore, 12 lactobacilli strains were isolated and identified from raw fermented cow milk as protective cultures. The safety of the stains was determined by applying antibiotic susceptibility, haemolytic and enzymatic evaluation. Only one strain, Lacticaseibacillus paracasei A11, met all safety requirements and demonstrated a broad spectrum of antifungal activity in vitro. The strain was cultivated in AWPC for 48 h and grew well (biomass yield 8 log10 cfu mL−1). L. paracasei A11 AWPC fermentate was used as a vehicle for protective culture in the development of pectin-AWPC-based edible coating. Both the fermentate and coating were tested for their antimicrobial properties on fresh acid-curd cheese. Coating with L. paracasei A11 strain reduced yeast and mould counts by 1.0–1.5 log10 cfu mL−1 (p ≤ 0.001) during cheese storage (14 days), simultaneously preserving its flavour and prolonging the shelf life for six days.
This study aimed to utilize two by-products, acid whey and apple pomace, as well as an indigenous Lactococcus lactis LL16 strain with the probiotic potential to produce a sustainable cheese with functional properties. Acid whey protein cheese was made by thermocoagulation of fresh acid whey and enhancing the final product by adding apple pomace, L. lactis LL16 strain, or a mixture of both. The sensory, the physicochemical, the proteolytic, and the microbiological parameters were evaluated during 14 days of refrigerated storage. The supplementation of the cheese with apple pomace affected (p ≤ 0.05) the cheese composition (moisture, protein, fat, carbohydrate, and fiber), the texture, the color (lightness, redness, and yellowness), and the overall sensory acceptability. The addition of the presumptive probiotic L. lactis LL16 strain decreased (p ≤ 0.05) the concentration of glutamic acid, thus increasing γ-aminobutyric acid (GABA) significantly in the acid whey cheese. The supplementation with apple pomace resulted in slightly (p < 0.05) higher counts of L. lactis LL16 on day seven, suggesting a positive effect of apple pomace components on strain survival. The symbiotic effect of apple pomace and LL16 was noted on proteolysis (pH 4.6-soluble nitrogen and free amino acids) in the cheese on day one, which may have positively influenced the overall sensory acceptance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.