The inhibitory glycine receptor (GlyR) is a ligand‐gated ion channel which mediates post‐synaptic inhibition in spinal cord and other regions of the vertebrate central nervous system. Previous biochemical and molecular cloning studies have indicated heterogeneity of GlyRs during development. Here, the distribution of GlyR subunit transcripts in rat brain and spinal cord was investigated by in situ hybridization using sequence‐specific oligonucleotide probes. In adult animals, GlyR alpha 1 subunit mRNA was abundant in spinal cord, but was also seen in a few brain areas, e.g. superior and inferior colliculi, whereas alpha 2 transcripts were found in several brain regions including layer VI of the cerebral cortex and hippocampus. GlyR alpha 3 subunit mRNA was expressed at low levels in cerebellum, olfactory bulb and hippocampus, while high amounts of beta subunit transcripts were widely distributed throughout spinal cord and brain. During development, alpha 2 mRNA accumulated already prenatally and decreased after birth, whereas alpha 1 and alpha 3 subunit transcripts appeared only in postnatal brain structures. Hybridization signals of beta subunit mRNA were seen already at early embryonic stages and continuously increased to high levels in adult rats. These data reveal unexpected differences in the regional and developmental expression of GlyR subunit mRNAs and point to novel functions of GlyR proteins in the mammalian central nervous system.
Most neuronal types have a well-identified electrical phenotype. It is now admitted that a same phenotype can be produced using multiple biophysical solutions defined by ion channel expression levels. This argues that systems-level approaches are necessary to understand electrical phenotype genesis and stability. Midbrain dopaminergic (DA) neurons, although quite heterogeneous, exhibit a characteristic electrical phenotype. However, the quantitative genetic principles underlying this conserved phenotype remain unknown. Here we investigated the quantitative relationships between ion channels’ gene expression levels in midbrain DA neurons using single-cell microfluidic qPCR. Using multivariate mutual information analysis to decipher high-dimensional statistical dependences, we unravel co-varying gene modules that link neurotransmitter identity and electrical phenotype. We also identify new segregating gene modules underlying the diversity of this neuronal population. We propose that the newly identified genetic coupling between neurotransmitter identity and ion channels may play a homeostatic role in maintaining the electrophysiological phenotype of midbrain DA neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.