Despite the fact that new technologies are based on knowledge from motor control and learning literature and that they provide an exciting potential for varied rehabilitation, recent evidence suggests that the only contribution to clinical practice currently is the provision of intensive, repetitive movements.
AIM The aim of this systematic review was to assess the current validity and reliability of radiological methods used to measure proximal hip geometry in children with cerebral palsy.METHOD A search was conducted using relevant keywords and inclusion/exclusion criteria of the MEDLINE, CINALH Plus, Embase, Web of Science, Academic Search Premier, The Cochrane Library, and PsychINFO databases. RESULTSThe migration percentage using X-rays showed excellent reliability and concurrent validity with three-dimensional (3D) measurements from computed tomography (CT) scans. The acetabular index, measured using X-rays had good reliability but moderate concurrent validity with 3D CT measurements; 3D CT scan indexes had greater reliability. The measurement of the neck shaft angle using X-rays showed excellent concurrent validity with measurements from 3D CT scans and excellent reliability. Regarding femoral anteversion, one study found an excellent correlation between two-dimensional CT and clinical assessment and excellent reliability. Two others showed less evidence for the use of CT ultrasounds.INTERPRETATION Most of the X-ray-based measurements showed good to excellent metrological properties. More metrological evidence is needed for the assessment of femoral anteversion. Magnetic resonance imaging and ultrasound-based measurements have great potential although very little metrological evidence is available.Hip deformities occur in over one-third of children with cerebral palsy (CP) and are the second most common musculoskeletal deformity after equinus.
In the early stage after stroke, within the first 2 weeks, physical therapy (PT) has 2 main goals: prevent immobilityrelated events and stimulate motor control recovery. However, the amount of PT to provide and the time after stroke for provision remain unclear.The organization of care in multidisciplinary stroke units has reduced the risk of death and dependency after stroke, with early mobilization and rehabilitation having an important role.1-3 Very early mobilization (VEM) was defined by the AVERT group (A Very Early Rehabilitation Trial): within the first 24 hours, focusing on out-of-bed activity (sitting, standing, walking), provided at least 3× more than usual care, by physical therapists or nurses. VEM has been found safe and feasible, 4 with a significant positive effect on recovery of walking 50 m unassisted, good functional prognosis on Barthel index at 3 months, 5 and for the frequency of severe complications. 6 Hemorrhagic stroke patients showed a better level of function (walking >15.24 m). 7 The recent European recommendations 8 and those from the American Stroke Association 9 promote VEM, although how early and how much a patient should be mobilized remains controversial. Some negative impact of early (<24 hours) versus delayed (<48 hours) physical rehabilitation has been reported, with increased risk of death. 10Background and Purpose-Intensive physical therapy (PT) facilitates motor recovery when provided during a subacute stage after stroke. The efficiency of very early intensive PT has been less investigated. We aimed to investigate whether intensive PT conducted within the first 2 weeks could aid recovery of motor control. Methods-This multicentre randomized controlled trial compared soft PT (20-min/d apart from respiratory needs) and intensive PT (idem+45 minutes of intensive exercises/day) initiated within the first 72 hours after a first hemispheric stroke. The primary outcome was change in motor control between day (D) 90 and D0 assessed by the Fugl-Meyer score. Main secondary outcomes were number of days to walking 10 m unassisted, balance, autonomy, quality of life, and unexpected medical events. All analyses were by intent to treat. Results-We could analyze data for 103 of the 104 included patients (51 control and 52 experimental group; 64 males; median age overall 67 [interquartile range 59-77], 67 right hemispheric lesions, 80 ischemic lesions, National Institutes of Health Stroke Scale score ≥8 for 82%). Fugl-Meyer score increased over time (P<0.0001), with no significant effect of treatment (P=0.29) or interaction between treatment and time (P=0.40). The median change in score between D90 and D0 was 27.5 (12-40) and 22.0 (12-56) for control and experimental groups (P=0.69). Similar results were found for the secondary criteria. Conclusions-Very early after stroke, intensive exercises may not be efficient in improving motor control. This conclusion may apply to mainly severe stroke. Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01520636.
Background and Purpose: Additional therapy may improve poststroke outcomes. Self-rehabilitation is a useful means to increase rehabilitation time. Mechanized systems are usual means to extend time for motor training. The primary aim was to compare the effects of self-rehabilitation using a mechanized device with control self-exercises on upper extremity impairment in patients with stroke. Methods: Phase III, parallel, concealed allocation, randomized controlled, multicenter trial, with 12-month follow-up. Patients aged 18 to 80 years, 3 weeks to 3 months poststroke with a Fugl-Meyer Assessment score of 10 to 40 points, were randomized to the Exo or control groups. All undertook two 30-minute self-rehabilitation sessions/day, 5 days/wk for 4 weeks in addition to usual rehabilitation. The Exo group performed games-based exercises using a gravity-supported mechanical exoskeleton (Armeo Spring). The control group performed stretching plus basic active exercises. Primary outcome was change in upper extremity Fugl-Meyer Assessment score at 4 weeks. Results: Two hundred fifteen participants were randomly allocated to the Exo group (107) or the control group (108). Mean age (SD), 58.3 (13.6) years; mean time poststroke, 54.8 (22.1) days; and mean baseline Fugl-Meyer Assessment score, 26.1 (9.5). There was no between-group difference in mean change in Fugl-Meyer Assessment score following the intervention: 13.3 (9.0) in the Exo group and 11.8 (8.8) in the control group ( P =0.22). There were no significant between-group differences in changes for any of the other outcomes at any time point (except for perception of the self-rehabilitation). There was no between-group difference in cost utility at 12 months. Conclusions: In patients with moderate-to-severe impairment in the subacute phase of stroke, the purchase and use of complex devices to provide additional upper limb training may not be necessary: simply educating patients to regularly move and stretch their limbs appears sufficient. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT01383512.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.