The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, dataset building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues arised and to address the challenges to develop in future research.
A series of 1,3,4-oxadiazole derivatives with significant broad-spectrum anticancer activity against different cell lines, and demonstrated telomerase inhibition, was subjected to Quantitative Structure-Activity Relationships (QSAR) analysis. Validated models with high correlation coefficients were developed. The Multiple Linear Regression (MLR) models, by Ordinary Least Squares (OLS), showed good robustness and predictive capability, according to the Multi-Criteria Decision Making (MCDM = 0.8352), a technique that simultaneously enhances the performances of a certain number of criteria. The descriptors selected for the models, such as electrotopological state (E-state) descriptors, and extended topochemical atom (ETA) descriptors, showed the relevant chemical information contributing to the activity of these compounds. The results obtained in this study make sure about the identification of potential hits as prospective telomerase inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.