—l‐phenylalanine (1 mg/g body wt) or physiological saline (0.9% NaCl) was given intraperitoneally to infant (7‐day old), immature (14‐day old), and adult (42‐day old) rats. The state of ribosomal aggregation was determined in the cerebral postmitochondrial supernatant and purified polyribosome fractions prepared in the presence of rat liver ribonuclease inhibitor. Polyribosomes isolated from cerebral cortices of infant and immature rats 30 or 60 min after administration of phenylalanine were partially disaggregated, whereas the state of aggregation of polyribosomes from mature cerebrum was unchanged. In contrast, little or no evidence of phenylalanine‐induced polyribosome disruption was noted in the postmitochondrial supernatant fractions, from which the cerebral polyribosomes were prepared, in any of the animals. Omission of the ribonuclease inhibitor resulted in polyribosome disaggregation in the postmitochondrial supernatant fractions prepared from saline‐treated as well as phenylalanine‐treated infant rats, but the disruption was more profound in the latter group. Ribonuclease activities in cerebral postmitochondrial supernatant preparations from infant and immature rats were higher than the corresponding values in preparations from adult animals. In addition, the administration of phenylalanine resulted in increases in ribonuclease activities in cerebral postmitochondrial supernatant preparations from the younger animals, but had no effect on these activities in adult animals. These results suggest that alterations in structure and function of polyribosomes from the infant rat cerebrum following a loading dose of phenylalanine were related to exposure of the polyribosomes during isolation to elevated activities of cerebral ribonucleases resulting from this treatment. This hypothesis was supported by the finding that phenylalanine treatment had no effect on the incorporation in vivo of intracisternally‐administered radioactive lysine into total, soluble or ribosomal protein of infant cerebrum. However, when cerebral ribosomal RNA was differentially labelled in phenylalanine‐treated and saline‐treated infant rats by the intracisternal administration of [3H] or [14C]uridine, and polyribosome fractions were then prepared from the pooled cerebral cortices of both groups, radioactive ribosomes derived from saline‐treated rats were more highly aggregated than those derived from phenylalanine‐treated animals. It is concluded that gross alterations in cerebral polyribosome structure and function do not occur in vivo in young rats given a large amount of phenylalanine intraperitoneally. However, this treatment, in addition to increasing ribonuclease activity in cerebral cell‐free preparations, also sensitizes cerebral polyribosomes to subsequent breakdown upon exposure to ribonucleases during isolation.
In order to elucidate the putative role of inhibin in regulation of spermatogenesis, expression of inhibin subunits was examined at defined stages of the cycle of the rat seminiferous epithelium. Twenty 2-mm segments of seminiferous tubules at stages XIII-I, II-VI, VII-VIII, and IX-XII were dissected using the transillumination technique and subunit specific messenger RNAs (mRNAs) were quantitated by filter hybridization. The alpha and beta-B subunit mRNAs varied significantly in different stages, the highest levels of both alpha and beta-B subunit expression were seen in stages XIII-I and the lowest in stages VII-VIII. The hybridization signals obtained with beta-actin probe were not significantly different between different stages indicating that the differences in the quantities of subunit mRNAs in different stages were not due to different amounts of RNA blotted. beta-A subunit mRNA levels were below the detection limit of the filter hybridization method. These data demonstrate that expression of inhibin alpha and beta-B subunits in the rat testis is stage dependent and suggest a paracrine role for inhibin-related peptides in regulation of spermatogenesis.
Investigations were carried out on the phosphorylation of ribosomal proteins in vivo in cerebral cortices of immature rats. Two-dimensional electrophoresis revealed that the cerebral 40S subunit contained at least four ribosomal proteins which were phosphorylated in animals given [32P]orthophosphate intracisternally. These proteins exhibited electrophoretic properties similar to those of the constitutive basic proteins S2, S3a, S5 and S6. The cerebral 60S subunit contained several proteins that were phosphorylated in vivo, including three basic proteins with electrophoretic mobilities similar to those of ribosomal proteins L6, L14 and L19. Four other proteins associated with the 60S subunit that were more acidic were also phosphorylated. Phosphorylated congeners of 40S and 60S ribosomal proteins could often be detected in distinct protein-stained spots on two-dimensional electrophoretograms. The cerebral S6 protein consisted of at least five distinct species in different states of phosphorylation. Administration of N6O-2' dibutyryl cyclic AMP increased the proportion of the more phosphorylated congeners of the S6 protein, but appeared to have little or no effect on phosphorylation of other cerebral ribosomal proteins. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated S6-protein phosphorylation; N2O2'-dibutyryl cyclic GMP had no effect on this process. These observations indicate that several ribosomal proteins of both subunits are normally phosphorylated in rat cerebral cortex in situ. The results also suggest that selective and specific alterations in the phosphorylation state of the S6 ribosomal protein of the cerebral 40S subunit may accompany the production of cyclic AMP during neural activation.
THE relationship between intracerebral levels of free amino acids and the synthesis of brain proteins has not been elucidated. Evidence has been provided from experiments in ciuo that protein synthesis in the central nervous system may be limited by restricted passage of amino acids through the blood-brain barrier ( GAITONDE and RICHTER, 1956;WAELSCH and LAJTHA, 1961 ;RICHTER, 1962). In support of this view is the recent observation that the protein synthetic activities of microsomal and ribosomal preparations from rat cerebral cortex were equivalent under optimal conditions to those of similar preparations from rat liver (ZOMZELY, ROBERTS and RAPAPORT, 1964), whereas hepatic proteins were renewed much more rapidly in viva than brain proteins (LAJTHA, FURST, GERSTEIN and WAELSCH, 1957;LAJTHA, 1959). Studies with isolated cerebral microsomes and ribosomes (ZOMZELY et al., 1964) further indicated that protein synthesis in the brain may be unusually sensitive to alterations in levels of amino acids, ions, and other regulatory substances. Similar conclusions may be derived from studies of amino acid incorporation into proteins of brain cortex slices (FOLBERGROVA, 1961 ; MASE, TAKAHASHI and OGATA, 1962).Alterations in the free amino acid composition of cerebral cortex were induced in young adult rats fed diets differing in amino acid content for 4 days (ROBERTS, 1963). In some instances, the cerebral variations reflected differences in plasma levels of amino acids. Concomitant changes were not observed in the total protein content of the cerebral cortex or in the amino acidcomposition of totalcerebral protein. Although these results suggested that protein synthesis in the brain might be relatively independent of alterations in the intracellular pool of free amino acids, differences may have been produced in the rates of synthesis of individual proteins which were not detectable by the methods employed, The present investigations reveal that differences in the distribution of free amino acids in plasma and cerebral cortex, produced by dietary variations or amino acid injection, were accompanied by variations in cerebral protein turnover. METHODS Dietary dejciency.Male rats of an inbred Sprague-Dawley strain were maintained on Purina laboratory chow until they were about 6 weeks old and weighed 160-17Og. They were then fed
To examine the pretranslational regulation of inhibin subunits in the rat testis by FSH, we studied the effects of hypophysectomy with or without selective FSH replacement on testicular inhibin subunit mRNA levels in immature and adult animals. In the first experiment (Exp I), sexually immature (20-23 days old) intact and hypophysectomized male rats were killed 1, 3, and 7 days after surgery, and the testicular content of inhibin subunit mRNAs was determined by filter hybridization. A second group of immature, intact, or hypophysectomized rats was treated with saline or FSH for 7 days as follows: I) intact, saline; II) hypophysectomized, saline; III) hypophysectomized, FSH [0.05 microgram/100 g BW, sc, twice daily (BID)]; IV) hypophysectomized, FSH (0.50 microgram/100 g BW, sc, BID); V) hypophysectomized, FSH (5.0 micrograms/100 g BW, sc, BID); and VI) hypophysectomized, FSH (50.0 micrograms/100 g BW, sc, BID). In the second experiment (Exp II), adult (60 days old) intact or hypophysectomized animals were treated with saline, FSH, and/or testosterone for 7 days as follows: I) intact, saline; II) hypophysectomized; saline; III) hypophysectomized, 22-mm testosterone implant; IV) hypophysectomized, FSH (50.0 micrograms/100 g BW, sc, BID; and V) hypophysectomized, 22-mm testosterone implant plus FSH (50.0 micrograms/100 g BW, sc, BID. The effects of FSH and testosterone on testicular inhibin subunit mRNA levels were measured by filter hybridization. In Exp I, the level of inhibin alpha-subunit mRNA per testis was significantly lower in hypophysectomized rats than in intact controls at all time points after surgery. Replacement of FSH to hypophysectomized immature rats led to a dose-dependent increase in alpha-subunit mRNA per testis. However, hypophysectomy and FSH replacement had no significant effect on beta-B-subunit mRNA. In adult rats (Exp II), hypophysectomy significantly lowered and FSH replacement increased testicular inhibin alpha-subunit mRNA levels. Replacement of testosterone to adult animals, either alone or in combination with FSH, had no effect on expression of inhibin alpha-subunit mRNA. beta-B mRNA levels in adult testis were not significantly altered by any of the treatments. beta-A-Subunit mRNA levels were below the detection threshold of filter hybridization in both Exp I and II. Collectively, these data demonstrate that FSH regulates alpha- but not beta-B-subunit mRNA in the testis of both immature and adult rats in vivo. Differential regulation of inhibin subunits may provide a mechanism for creation and regulation of functional diversity of inhibin-related peptides in the testis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.