Cannabis sativa-derived compounds, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and components of the endocannabinoids system, such as N-arachidonoylethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), are extensively studied to investigate their numerous biological effects, including powerful antioxidant effects. Indeed, a series of recent studies have indicated that many disorders are characterized by alterations in the intracellular antioxidant system, which lead to biological macromolecule damage. These pathological conditions are characterized by an unbalanced, and most often increased, reactive oxygen species (ROS) production. For this study, it was of interest to investigate and recapitulate the antioxidant properties of these natural compounds, for the most part CBD and THC, on the production of ROS and the modulation of the intracellular redox state, with an emphasis on their use in various pathological conditions in which the reduction of ROS can be clinically useful, such as neurodegenerative disorders, inflammatory conditions, autoimmunity, and cancers. The further development of ROS-based fundamental research focused on cannabis sativa-derived compounds could be beneficial for future clinical applications.
Pollutants consist of several components, known as direct or indirect mutagens, that can be associated with the risk of tumorigenesis. The increased incidence of brain tumors, observed more frequently in industrialized countries, has generated a deeper interest in examining different pollutants that could be found in food, air, or water supply. These compounds, due to their chemical nature, alter the activity of biological molecules naturally found in the body. The bioaccumulation leads to harmful effects for humans, increasing the risk of the onset of several pathologies, including cancer. Environmental components often combine with other risk factors, such as the individual genetic component, which increases the chance of developing cancer. The objective of this review is to discuss the impact of environmental carcinogens on modulating the risk of brain tumorigenesis, focusing our attention on certain categories of pollutants and their sources.
The epidemic spread of obesity is nowadays recognized as a global health and economic burden, arising great interest in the scientific community. The rate of adult obesity steadily increases concomitantly with the cancer incidence. As has been comprehensively reported, obesity is included among the multiple cancer risk factors and can progressively cause and/or exacerbate certain cancer types, as colorectal and breast cancers. The term adiponcosis was forged precisely to emphasize the interconnection between obesity and cancer onset and progression. The underlying mechanisms of adiponcosis have not been fully elucidated yet, may vary on cancer type, and depend on body fat distribution. It has been proposed that insulin resistance and related chronic hyperinsulinemia, increased insulin‐like growth factors production, chronic inflammation or increased bioavailability of steroid hormones could be responsible of cancer hallmarks. Additionally, it has been suggested that adipose tissue‐derived hormones, cytokines and adipokines, such as leptin, adiponectin and inflammatory markers, may reflect mechanisms linked to tumorigenesis. This review summarizes the current evidence on pathways, hormones, cytokines and low‐chronic inflammation subtending adiponconsis, focusing on breast and colorectal cancers. In addition, we analyzed the lifestyle interventions that could attenuate the driving forces of obesity‐related cancer incidence and progression. Moreover, current targets and drugs, their pros and cons, as well as new mechanisms and targets with promising therapeutic potential in cancer are discussed. Depicting this complex interconnection will provide insights for establishing new therapeutic approaches to halt the obesity impacts and thwart cancer onset and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.