In fibroblasts, thrombin induces collagen deposition through activation of a G-proteincoupled receptor, proteinase-activated receptor 1 (PAR 1 ). In the current study, we examined whether PAR 1 antagonism inhibits hepatic stellate cell (HSC) activation in vitro and whether it protects against fibrosis development in a rodent model of cirrhosis. A rat HSC line was used for in vitro studies whereas cirrhosis was induced by bile duct ligation (
The serotonin receptor subtype 5-HT(1A) was one of the first serotonin receptor subtypes pharmacologically characterized. This receptor subtype has long been object of intense research and is implicated in the pathogenesis and treatment of anxiety and depressive disorders. In recent years, new chemical entities targeting the 5-HT(1A) receptor (alone or in combination with other molecular targets) have been proposed for novel therapeutic uses in neuroprotection, cognitive impairment, Parkinson's disease, pain treatment, malignant carcinoid syndrome, and prostate cancer. This Perspective compares existing data on expression and signaling activity of the 5-HT(1A) receptor to a ligand with an intrinsic agonist or antagonist profile. Our purpose is also to make a complete overview, useful for underlining the features needed to select a specific pharmacological profile rather than another one. This aspect could be really interesting to consider and justify the 5-HT(1A) receptor as a new attractive target for drug discovery.
2,6-Dipeptidyl-anthraquinones are a promising class of nucleic acid-binding compounds that act as NC inhibitors in vitro. We designed, synthesized, and tested new series of 2,6-disubstituted-anthraquinones, which are able to bind viral nucleic acid substrates of NC. We demonstrate here that these novel derivatives interact preferentially with noncanonical structures of TAR and cTAR, stabilize their dynamics, and interfere with NC chaperone activity.
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.