BackgroundThe rat hybridoma cell line YB2/0 appears a good candidate for the large-scale production of low fucose recombinant mAbs due to its lower expression of fut8 gene than other commonly used rodent cell lines. However, important variations of the fucose content of recombinant mAbs are observed in production culture conditions. To improve our knowledge on the YB2/0 fucosylation capacity, we have cloned and characterized the rat fut8 gene.ResultsThe cDNAs encoding the rat α1,6-fucosyltransferase (FucT VIII) were cloned from YB2/0 cells by polymerase chain reaction-based and 5' RNA-Ligase-Mediated RACE methods. The cDNAs contain an open reading frame of 1728 bp encoding a 575 amino acid sequence showing 94% and 88% identity to human and pig orthologs, respectively. The recombinant protein expressed in COS-7 cells exhibits a α1,6-fucosyltransferase activity toward human asialo-agalacto-apotransferrin. The rat fut8 gene is located on chromosome 6 q and spans over 140 kbp. It contains 9 coding exons and four 5'-untranslated exons. FISH analysis shows a heterogeneous copy number of fut8 in YB2/0 nuclei with 2.8 ± 1.4 mean copy number. The YB2/0 fut8 gene is expressed as two main transcripts that differ in the first untranslated exon by the usage of distinct promoters and alternative splicing. Luciferase assays allow defining the minimal promoting regions governing the initiation of the two transcripts, which are differentially expressed in YB2/0 as shown by duplex Taqman QPCR analysis. Bioinformatics analysis of the minimal promoter regions upstream exons E-2 and E-3, governing the transcription of T1 and T2 transcripts, respectively, evidenced several consensus sequences for potential transcriptional repressors. Transient transfections of Rat2 cells with transcription factor expression vectors allowed identifying KLF15 as a putative repressor of T1 transcript in Rat2 cells.ConclusionAltogether, these data contribute to a better knowledge of fut8 expression in YB2/0 that will be useful to better control the fucosylation of recombinant mAbs produced in these cells.
The disialoganglioside G(D3) is an oncofetal marker of a variety of human tumors including melanoma and neuroblastoma, playing a key role in tumor progression. G(D3) and 9-O-acetyl-G(D3) are overexpressed in approximately 50% of invasive ductal breast carcinoma, but no relationship has been established between disialoganglioside expression and breast cancer progression. In order to determine the effect of G(D3) expression on breast cancer development, we analyzed the biosynthesis of gangliosides in several breast epithelial cell lines including MDA-MB-231, MCF-7, BT-20, T47-D, and MCF10A, by immunocytochemistry, flow cytometry, and real-time PCR. Our results show that, in comparison to tumors, cultured breast cancer cells express a limited pattern of gangliosides. Disialogangliosides were not detected in any cell line and G(M3) was only observed at the cell surface of MDA-MB-231 cells. To evaluate the influence of G(D3) in breast cancer cell behavior, we established and characterized MDA-MB-231 cells overexpressing G(D3) synthase. We show that G(D3) synthase expressing cells accumulate G(D3), G(D2), and G(T3) at the cell surface. Moreover, G(D3) synthase overexpression bypasses the need of serum for cell growth and increases cell migration. This suggests that G(D3) synthase overexpression may contribute to increasing the malignant properties of breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.