The “gold dust defect” (GDD) appears at the surface of ferritic stainless steels (FSS) and degrades their appearance. Previous research showed that this defect might be related to intergranular corrosion and that the addition of aluminium improves surface quality. However, the nature and origin of this defect are not properly understood yet. In this study, we performed detailed electron backscatter diffraction analyses and advanced monochromated electron energy-loss spectroscopy experiments combined with machine-learning analyses in order to extract a wealth of information on the GDD. Our results show that the GDD leads to strong textural, chemical, and microstructural heterogeneities. In particular, the surface of affected samples presents an α-fibre texture which is characteristic of poorly recrystallised FSS. It is associated with a specific microstructure in which elongated grains are separated from the matrix by cracks. The edges of the cracks are rich in chromium oxides and MnCr2O4 spinel. In addition, the surface of the affected samples presents a heterogeneous passive layer, in contrast with the surface of unaffected samples, which shows a thicker and continuous passive layer. The quality of the passive layer is improved with the addition of aluminium, explaining the better resistance to the GDD.
The "Gold Dust Defect" affects the surface quality of AISI 430 ferritic stainless steels. However, there is a very limited number of studies focusing on it. To better understand its nature, we have combined several techniques, such as x-ray photoelectron spectroscopy, atomic force microscopy, and transmission electron microscopy, in order to extract a maximum of structural and compositional information. Our results show that the surface quality, microstructure, and chemistry of the samples are strongly affected by the aluminum content, the severity of the defect being the highest at the lowest Al concentration. Not only is the concentration of the defects at the surface strongly reduced when increasing the Al. at.% but the depth of the cavities is also reduced by a factor of 3 when the Al content is increased from 0.09 at.% to 0.59 at.%. Our results provide new information on the nature of this defect, and show that an increase of the aluminum content allows the Cr concentration to be maintained in the range of values required to maintain the passivity of the steel, thus improving the surface quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.