Nitric oxide synthase-containing cells were visualized in the anterior pituitary gland by immunocytochemistry. Consequently, we began an evaluation of the possible role of NO in the control of anterior pituitary function.Prolactin is normally under inhibitory hypothalamic control, and in vitro the gland secretes large quantities of the hormone. When hemipituitaries were incubated for 30 min in the presence of sodium nitroprusside, a releaser of NO, prolactin release was inhibited. This suppression was completely blocked by the scavenger of NO, hemoglobin. Analogs of arginine, such as NG-monomethyl-L-arginine (NMMA, where NG is the terminal guanidino nitrogen) and nitroarginine methyl ester, inhibit NO synthase. Incubation of hemipituitaries with either of these compounds significantly increased prolactin release. Since in other tissues most of the actions of NO are mediated by activation of soluble guanylate cyclase with the formation of cyclic GMP, we evaluated the effects of cyclic GMP on prolactin release. Cyclic GMP (10 mM) produced an "40%o reduction in prolactin release. Prolactin release in vivo and in vitro can be stimulated by several peptides, which include vasoactive intestinal polypeptide and substance P. Consequently, we evaluated the possible role of NO in these stimulations by incubating the glands in the presence of either of these peptides alone or in combination with NMMA. In the case of vasoactive intestinal polypeptide, the significant stimulation of prolactin release was augmented by NMMA to give an additive effect. In the case of substance P, there was a smaller but significant release of prolactin that was not significantly augmented by NMMA. We conclude that NO has little effect on the stimulatory action of these two peptides on prolactin release. Dopamine (0.1 ,uM), an inhibitor of prolactin release, reduced prolactin release, and this inhibitory action was significantly blocked by either hemoglobin (20 jig/ml) or NMMA and was completely blocked by 1 mM nitroarginine methyl ester. Atrial natriuretic factor at 1 ,uM also reduced prolactin release, and its action was completely blocked by NMMA. In contrast to these results with prolactin, luteinizing hormone (LH) was measured in the same medium in which the effect of nitroprusside was tested on prolactin release, there was no effect of nitroprusside, hemoglobin, or the combination of nitroprusside and hemoglobin on luteinizing hormone release. Therefore, in contrast to its inhibitory action on prolactin release NO had no effect on luteinizing hormone release. Immunocytochemical studies by others have shown that NO synthase is present in the folliculostellate cells and also the gonadotrophs of the pituitary gland. We conclude that NO produced by either of these cell types may diffuse to the lactotropes, where it can inhibit prolactin release. NO appears to play little role in the The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accorda...
Cadmium (Cd) is widely used in industrial applications and is an important side contaminant of agricultural products. As an endocrine disruptor, Cd modifies pituitary hormone release. It has been shown that this metal causes oxidative stress in primary cultures of anterior pituitary cells. To examine whether Cd induces redox damage in the hypothalamic-pituitary axis in vivo and to evaluate the efficacy of the antioxidant molecule melatonin to prevent Cd activity, rats were exposed to Cd (5 p.p.m. in drinking water) with or without melatonin (3 microg/mL drinking water) for 1 month. In the anterior pituitary, Cd increased lipid peroxidation and mRNA levels for heme oxygenase-1 (HO-1) at both time intervals tested (09:00 and 01:00 hr, beginning of rest span and middle of activity span, respectively). Melatonin administration prevented the Cd-induced increase in both parameters. In the hypothalamus, Cd affected the levels of mRNA for HO-1 by decreasing it in the evening. Melatonin reduced hypothalamic HO-1 gene expression. Cd treatment augmented gene expression of nitric oxide synthase (NOS)1 and NOS2 in the pituitary whereas melatonin decreased it, impairing the activity of Cd. Exposure to Cd increased the levels of hypothalamic NOS1 mRNA at 09:00 hr and decreased the levels of NOS2 mRNA at 01:00 hr, with melatonin treatment preventing Cd effects. Cd treatment decreased plasma thyroid-stimulating hormone levels at both examined times, while melatonin reversed the effect of Cd at 09:00 hr and partially counteracted the effect at 01:00 hr. There were important variations between day and night in the expression of all the genes tested in both tissues. Melatonin treatment was effective reducing all examined effects of Cd, documenting its effectiveness to protect the rat hypothalamic-pituitary axis from the toxic metal effects.
Nitric oxide synthase (NOS)-containing neurons, termed NOergic neurons, occur in various regions of the hypothalamus, including the median eminence-arcuate region, which plays an important role in controlling the release of luteinizing hormone-releasing hormone (LHRH). We examined the effect of NO on release of y-aminobutyric acid (GABA) from medial basal hypothalamic (MBH) explants incubated in vitro. Sodium nitroprusside (NP) (300 ,uM), a spontaneous releaser of NO, doubled the release of GABA. This release was significantly reduced by incubation of the tissue with hemoglobin, a scavenger of NO, whereas hemoglobin alone had no effect on the basal release of GABA. Elevation of the potassium concentration (40 mM) in the medium increased GABA release 15-fold; this release was further augmented by NP. Hemoglobin blocked the increase in GABA release induced by NP but had no effect on potassium-induced release, suggesting that the latter, is not related to NO. As in the case of hemoglobin, NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, had no effect on basal release of GABA, which indicates again that NO is not significant to basal GABA release. However, NMMA markedly inhibited the release of GABA induced by high potassium, which indicates that NO plays a role in potassiuminduced release of GABA. In conditions in which the release of GABA was substantially augmented, there was a reduction in GABA tissue stores as well, suggesting that synthesis of GABA in these conditions did not keep up with release of the amine. Although NO released GABA, there was no effect of the released GABA on NO production, for incubation of MBH explants with GABA had no effect on NO release as measured by [14C]citrulline production. To determine whether GABA had any effect on the release of LHRH from these MBH explants, GABA was incubated with the tissue and the effect on LHRH release was determined. GABA (10-5 or 10-6 M) induced a 70%o decrease in the release of LHRH, indicating that in the male rat GABA inhibits the release of this hypothalamic peptide. This inhibition in LHRH release induced by GABA was blocked by NMMA (300 ,uM), which indicates that GABA converts the stimulatory effect of NO on LHRH release into an inhibitory one, presumably via GABA receptors, which activate chloride channels that hyperpolarize the cell. Previous results have indicated that norepinephrine stimulates release of NO from the NOergic neurons, which then stimulates the release of LHRH. The current results indicate that the NO released also induces release of GABA, which then inhibits further LHRH release. Thus, in vivo the norepinephrinergic-driven pulses of LHRH release may be terminated by GABA released from GABAergic neurons via NO.Constitutive nitric oxide synthase (NOS) occurs in hypothalamic neurons (1, 2). These neurons, which convert L-arginine to citrulline and NO, have been termed NOergic neurons (2,The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby ma...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.