Photocatalytic degradation mechanismFigure S1 displays the mechanism for the photocatalytic degradation involved in the operation of the TiO 2 /Au/Mg-micromotor. The new micromotors consist of a photoactive TiO 2 surface layer embedded with Au nanoparticles for photodecomposition. Under UV irradiation, the photogenerated positive holes react with adsorbed water and produce strong oxidizing hydroxyl radicals. In addition, the photogenerated free electrons react with adsorbed molecular O 2 to produce superoxide anions that could also contribute to the production of peroxide radicals, hydroxyl radicals, and hydroxyl anions. The complete mineralization of CWAs has been achieved due to coupled oxidation-reduction carried out by the highly active radicals and anions.The presence of the Au nanoparticles can effectively shift the Fermi level of TiO 2 and enhance the charge carrier separation to extend the lifetime of the generated radicals and anions, which results in an enhanced photocatalytic efficiency.
Stem cell membrane-coated nanogels can effectively evade clearance of the immune system, enhance the tumor targeting properties and antitumor chemotherapy efficacy of gelatin nanogels loaded doxorubicin in mice.
Self‐propelled activated carbon‐based Janus particle micromotors that display efficient locomotion in environmental matrices and offer effective ‘on‐the‐fly’ removal of wide range of organic and inorganic pollutants are described. The new bubble‐propelled activated carbon Janus micromotors rely on the asymmetric deposition of a catalytic Pt patch on the surface of activated carbon microspheres. The rough surface of the activated carbon microsphere substrate results in a microporous Pt structure to provide a highly catalytic layer, which leads to an effective bubble evolution and propulsion at remarkable speeds of over 500 μm/s. Such coupling of the high adsorption capacity of carbon nanoadsorbents with the rapid movement of these catalytic Janus micromotors, along with the corresponding fluid dynamics and mixing, results in a highly efficient moving adsorption platform and a greatly accelerated water purification. The adsorption kinetics and adsorption isotherms have been investigated. The remarkable decontamination efficiency of self‐propelled activated carbon‐based Janus micromotors is illustrated towards the rapid removal of heavy metals, nitroaromatic explosives, organophosphorous nerve agents and azo‐dye compounds, indicating considerable promise for diverse environmental, defense, and public health applications.
A red blood cell membrane‐camouflaged nanowire that can serve as new generation of biomimetic motor sponge is described. The biomimetic motor sponge is constructed by the fusion of biocompatible gold nanowire motors and RBC nanovesicles. The motor sponge possesses a high coverage of RBC vesicles, which remain totally functional due to its exclusively oriented extracellular functional portion on the surfaces of motor sponge. These biomimetic motors display efficient acoustical propulsion, including controlled movement in undiluted whole blood. The RBC vesicles on the motor sponge remain highly stable during the propulsion process, conferring thus the ability to absorb membrane‐damaging toxins and allowing the motor sponge to be used as efficient toxin decoys. The efficient propulsion of the motor sponges under an ultrasound field results in accelerated neutralization of the membrane‐damaging toxins. Such motor sponges connect artificial nanomotors with biological entities and hold great promise for treating a variety of injuries and diseases caused by membrane‐damaging toxins.
Magnetocatalytic hybrid Janus micromotors encapsulating phenylboronic acid (PABA) modified graphene quantum dots (GQDs) are described herein as ultrafast sensors for the detection of deadly bacteria endotoxins. A bottom-up approach was adopted to synthesize an oil-in-water emulsion containing the GQDs along with a high loading of platinum and iron oxide nanoparticles on one side of the Janus micromotor body. The two different "active regions" enable highly efficient propulsion in the presence of hydrogen peroxide or magnetic actuation without the addition of a chemical fuel. Fluorescence quenching was observed upon the interaction of GQDs with the target endotoxin (LPS), whereby the PABA tags acted as highly specific recognition receptors of the LPS core polysaccharide region. Such adaptive hybrid operation and highly specific detection hold considerable promise for diverse clinical, agrofood, and biological applications and integration in future lab-on-chip technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.