O objetivo deste artigo é identificar na literatura variáveis explicativas e métodos matemáticos frequentemente utilizados em modelos de geração de viagens de carga, e selecionar, dentre as encontradas, variáveis que possam ser usadas para auxiliar na compreensão do fluxo de cargas, considerando o caso da Região Metropolitana do Rio de Janeiro (RMRJ). A etapa de identificação na literatura foi realizada por meio de uma revisão bibliográfica sistemática, em que foram encontradas variáveis relacionadas ao estabelecimento, como número de empregados, área construída, número de lojas, entre outras; e relacionadas à socioeconomia da região, como população, número de domicílios, e empregos na região. Foram testadas as relações entre fluxo de carga na RMRJ e variáveis socioeconômicas (população, emprego e domicílios), utilizando os métodos de taxas de viagens e regressão linear. Os resultados mostram que todas as variáveis podem explicar a geração de viagens de carga, sendo domicílios e população as que apresentaram melhor relação com o fluxo de cargas.Transporte urbano de carga. Geração de viagens de carga. Taxa de viagens.
The purpose of this paper is to analyze variables and freight trip generation (FTG) models in the literature inorder to identify which variables can be used to explain FTG in urban areas. The variables found are establishment-based, such as number of employees, gross floor area, and number of stores, among others; and related to the territory, such as population, number of households, and jobs in the region. Three variables were selected (population, households and employment) and tested using data from the metropolitan region of Rio de Janeiro via two methods: travel rates and linear regression. The results show that all variables can explain FTG, but households and population presented a closer association with freight flow.Freight trip generation. Urban freight transport. Trip rates.
The goal of this paper is to analyze the relation between socioeconomic variables and freight trip generation, regarding the Metropolitan Region of Rio de Janeiro, through the use of linear regression models. A systematic literature review is conducted in order to identify which independent variables could be used in the models. The variables found are mostly related to the establishment, such as number of employees, floor area, number of stores among others; and socioeconomic variables, such as population, households and jobs in the region. The relation between the latter and number of truck trips is verified with linear regression models, and the results show that the models are valid and the variables are able to explain the freight flow in the region studied, contributing to the region’s transport planning and to the strategic planning of companies that operate in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.