The structure of neamine bound to the A site of the bacterial ribosomal RNA was used in the design of novel aminoglycosides. The design took into account stereo and electronic contributions to interactions between RNA and aminoglycosides, as well as a random search of 273 000 compounds from the Cambridge structural database and the National Cancer Institute 3-D database that would fit in the ribosomal aminoglycoside-binding pocket. A total of seven compounds were designed and subsequently synthesized, with the expectation that they would bind to the A-site RNA. Indeed, all synthetic compounds were found to bind to the target RNA comparably to the parent antibiotic neamine, with dissociation constants in the lower micromolar range. The synthetic compounds were evaluated for antibacterial activity against a set of important pathogenic bacteria. These designer antibiotics showed considerably enhanced antibacterial activities against these pathogens, including organisms that hyperexpressed resistance enzymes to aminoglycosides. Furthermore, analyses of four of the synthetic compounds with two important purified resistance enzymes for aminoglycosides indicated that the compounds were very poor substrates; hence the activity of these synthetic antibiotics does not appear to be compromised by the existing resistance mechanisms, as supported by both in vivo and in vitro experiments. The design principles disclosed herein hold the promise of the generation of a large series of designer antibiotics uncompromised by the existing mechanisms of resistance.
Understanding the basic principles that govern RNA binding by aminoglycosides is important for the design of new generations of antibiotics that do not suffer from the known mechanisms of drug resistance. With this goal in mind, we examined the binding of kanamycin A and four derivatives (the products of enzymic turnovers of kanamycin A by aminoglycoside-modifying enzymes) to a 27 nucleotide RNA representing the bacterial ribosomal A site. Modification of kanamycin A functional groups that have been directly implicated in the maintenance of specific interactions with RNA led to a decrease in affinity for the target RNA. Overall, the products of reactions catalyzed by aminoglycoside resistance enzymes exhibit diminished binding to the A site of bacterial 16S rRNA, which correlates well with a loss of antibacterial ability in resistant organisms that harbor these enzymes.
Identification of small molecular weight compounds targeting specific sites in the ribosome can accelerate development of new antibiotics and provide new tools for ribosomal research. We demonstrate here that antibiotic-size short peptides capable of inhibiting protein synthesis can be selected by using specific elements of ribosomal RNA as a target. The ‘h18’ pseudoknot encompassing residues 500-545 of the small ribosomal subunit RNA was used as a target in screening a heptapeptide phage display library. Two of the selected peptides could efficiently interfere with both bacterial and eukaryotic translation. One of these inhibitory peptides exhibited a high-affinity binding to the isolated small ribosomal subunit (Kd of 1.1 μM). Identification of inhibitory peptides which likely target a specific rRNA structure may pave new ways for validating new antibiotic sites in the ribosome. The selected peptides can be used as a tool in search of novel site-specific inhibitors of translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.