Inspired by the promising ionic conductivities of the lithium conducting garnets, we present a comparative study on the influence of the ionic radius of M(2+) on the 8-coordinate site and the crystal structure on the ionic transport in the solid solution Li6MLa2Ta2O12. Neutron diffraction and synchrotron diffraction in combination with AC impedance measurements are employed to understand the systematic substitution with different-sized alkaline earth cations M(2+). As may be expected, the unit-cell parameters increase linearly with increasing ionic radius from Ca(2+) over Sr(2+) to Ba(2+), accompanied by an increase in the polyhedral volumes of the dodecahedral, and tetrahedral positions and the ionic conductivities. While the TaO6 octahedral volume remain constant, the anisotropic thermal parameters of the coordinating oxygen anions suggest a high degree of rotational freedom with increasing unit-cell size. These structural parameters lead to lower activation energies because of broader Li conduction pathways and a higher flexibility in the crystal lattice, ultimately controlling the ionic conductivities in this class of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.