Insulin resistance and hyperinsulinemia are generally associated with obesity. Obese nondiabetic individuals develop a compensatory β-cell response to adjust insulin levels to the increased demand, maintaining euglycemia. Although several studies indicate that this compensation relies on structural changes, the existence of β-cell functional adaptations is incompletely understood. Here, we fed female mice with a high-fat diet (HFD) for 12 weeks. These animals became obese, hyperinsulinemic, insulin-resistant, and mildly glucose-intolerant while fed, and fasting glycemia was comparable in HFD and control mice. Islets from HFD animals exhibited increased β-cell mass and hypertrophy. Additionally, they had enhanced insulin gene expression and content and augmented glucose-induced insulin secretion. Electrophysiological examination of β-cells from both groups showed no differences in KATP channel open probability and conductance. However, action potentials elicited by glucose had larger amplitude in obese mice. Glucose-induced Ca²⁺ signals in intact islets, in isolated β-cells, and individual β-cells within islets were also increased in HFD mice. Additionally, a higher proportion of glucose-responsive cells was present in obese mice. In contrast, whole-cell Ca²⁺ current densities were similar in both groups. Capacitance measurements showed that depolarization-evoked exocytosis was enhanced in HFD β-cells compared with controls. Although this augment was not significant when capacitance increases of the whole β-cell population were normalized to cell size, the exocytotic output varied significantly when β-cells were distributed by size ranges. All these findings indicate that β-cell functional adaptations are present in the islet compensatory response to obesity.
Pancreatic α cells are exposed to metabolic stress during the evolution of type 2 diabetes (T2D), but it remains unclear whether this affects their survival. We used electron microscopy to search for markers of apoptosis and endoplasmic reticulum (ER) stress in α and β cells in islets from T2D or non-diabetic individuals. There was a significant increase in apoptotic β cells (from 0.4% in control to 6.0% in T2D), but no α cell apoptosis. We observed, however, similar ER stress in α and β cells from T2D patients. Human islets or fluorescence-activated cell sorting (FACS)-purified rat β and α cells exposed in vitro to the saturated free fatty acid palmitate showed a similar response as the T2D islets, i.e. both cell types showed signs of ER stress but only β cells progressed to apoptosis. Mechanistic experiments indicate that this α cell resistance to palmitate-induced apoptosis is explained, at least in part, by abundant expression of the anti-apoptotic protein Bcl2l1 (also known as Bcl-xL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.