BACKGROUND Liver diseases are associated with the excess formation of advanced glycation end products (AGEs), which induce tissue inflammation and oxidative damage. However, the trend of oxidative marker levels according to the steatosis grade in non-alcoholic fatty liver disease (NAFLD) is unclear. AIM To compare serum AGE levels between participants with NAFLD accordingly to steatosis severity in the baseline ELSA-Brasil population. METHODS In 305 individuals at baseline ELSA-Brasil, NAFLD-associated steatosis was classified by ultrasound hepatic attenuation. The participants were grouped according to the severity of steatosis: mild and moderate/severe pooled. The measurement of serum fluorescent AGE concentrations was based on spectrofluorimetric detection. Serum AGE content and clinical and laboratory characteristics of the participants were compared between groups. The correlation between serum AGE levels and the grade of steatosis was analyzed. Logistic regression analysis was used to investigate the relationship between serum AGE levels and steatosis severity. A P value < 0.05 was considered statistically significant. RESULTS According to the steatosis severity spectrum in NAFLD, from mild to moderate/severe, individuals with the most severe steatosis grade had a higher incidence of metabolic syndrome (63% vs 34%, P ≤ 0.001), diabetes mellitus (37% vs 14%, P ≤ 0.001), and high cholesterol levels (51% vs 33%, P < 0.001). Moreover, individuals with increasing severity of steatosis presented increasing waist circumference, body mass index, systolic and diastolic blood pressure, fasting blood glucose, glycated hemoglobin, insulin, triglycerides, alanine aminotransferase, gamma-glutamyl transferase, C-reactive protein, and uric acid levels and lower high-density lipoprotein. Higher serum AGE content was present in the moderate/severe group of individuals than in the mild group ( P = 0.008). In addition, the serum AGE levels were correlated with the steatosis grade in the overall sample (rho = 0.146, P = 0.010). Logistic regression analysis, after adjusting for confounding variables, showed that subjects with higher serum AGE content had a 4.6-fold increased chance of having moderate or severe steatosis when compared to low levels of serum AGEs. According to the results of the receiver operator characteristic curves analyses (areas under the curve, AUC = 0.83), AGEs could be a good marker of steatosis severity in patients with NAFLD and might be a potential biomarker in predicting NAFLD progression, strengthening the involvement of AGE in NAFLD pathogenesis. CONCLUSION NAFLD-associated steatosis was associated with serum AGE levels; therefore,...
Increased reactive oxidative stress, lipid peroxidation, inflammation, and fibrosis, which contribute to tissue damage and development and progression of nonalcoholic liver disease (NAFLD), play important roles in microcirculatory disorders. We investigated the effect of the modulatory properties of simvastatin (SV) on the liver and adipose tissue microcirculation as well as metabolic and oxidative stress parameters, including the advanced lipoxidation end product–receptors of advanced glycation end products (ALE-RAGE) pathway. SV was administered to an NAFLD model constructed using a high-fat–high-carbohydrate diet (HFHC). HFHC caused metabolic changes indicative of nonalcoholic steatohepatitis; treatment with SV protected the mice from developing NAFLD. SV prevented microcirculatory dysfunction in HFHC-fed mice, as evidenced by decreased leukocyte recruitment to hepatic and fat microcirculation, decreased hepatic stellate cell activation, and improved hepatic capillary network architecture and density. SV restored basal microvascular blood flow in the liver and adipose tissue and restored the endothelium-dependent vasodilatory response of adipose tissue to acetylcholine. SV treatment restored antioxidant enzyme activity and decreased lipid peroxidation, ALE-RAGE pathway activation, steatosis, fibrosis, and inflammatory parameters. Thus, SV may improve microcirculatory function in NAFLD by downregulating oxidative and ALE-RAGE stress and improving steatosis, fibrosis, and inflammatory parameters.
Type 2 diabetic (T2D) patients have liver and adipose tissue microcirculation disturbances associated with metabolic dysfunction and disease progression. However, the potential role of aerobic training on hepatic and white adipose tissue (WAT) microcirculation and the underlying mechanisms have not been elucidated to date. Therefore, we investigated the role of aerobic training on liver and WAT microcirculation and AGE-RAGE modulation in T2D mice. Methods: The control group (CTL) was fed standard chow, and T2D was induced by feeding male C57BL/6 a high-fat, highcarbohydrate diet for 24 weeks. In the following 12 weeks, mice underwent aerobic training (CTL EX and T2D EX groups), or were kept sedentary (CTL and T2D groups). We assessed metabolic parameters, biochemical markers, oxidative damage, the AGE-RAGE axis, hepatic steatosis, hepatic stellate cells activation (HSC) and liver and WAT microcirculation. Results: Hepatic microcirculation was improved in T2D EX mice which were associated with improvements in body, liver and fat mass, blood pressure, hepatic steatosis and fibrosis, and decreased HSC and AGE-RAGE activation. In contrast, improvement in WAT microcirculation, that is, decreased leukocyte recruitment and increased perfusion, was associated with increased catalase antioxidant activity. Conclusion:Physical training improves hepatic and adipose tissue microcirculatory dysfunction associated with T2D, likely due to downregulation of AGE-RAGE axis, decreased HSC activation and increased antioxidant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.