Large polarons are known to form in lead halide perovskites (LHPs). Photoinduced isolated polarons at low densities have been well-researched, but many-body interactions at elevated polaron densities, exceeding the Mott criterion (i.e., Mott polaron density), have remained elusive. Here, employing ultrafast terahertz spectroscopy, we identify a stable Mott polaron state in LHPs at which the polaron wavefunctions start to overlap. The Mott polaron density is determined to be ∼1018 cm–3, in good agreement with theoretical calculations based on the Feynman polaron model. The electronic phase transition across the Mott density is found to be universal in LHPs and independent of the constituent ions. Exceeding the Mott polaron density, excess photoinjected charge carriers annihilate quickly within tens to hundreds of picoseconds, before reaching the stable and long-lived Mott state. These results have considerable implications for LHP-based devices and for understanding exotic phenomena reported in LHPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.