We have studied binding and block of sodium channels by 12 derivatives of the 22-residue peptide mu-conotoxin GIIIA (mu-CTX) in which single amino acids were substituted as follows: Arg or Lys by Gln, Gln-18 by Lys, Asp by Asn, and HO-Pro by Pro. Derivatives were synthesized as described by Becker et al. [(1989) Eur. J. Biochem. 185, 79]. Binding was measured by displacement of labeled saxitoxin from eel electroplax membranes (100 mM choline chloride, 10 mM HEPES-NaOH, pH 7.4). Blocking kinetics were evaluated from steady-state, single-channel recordings from rat skeletal muscle sodium channels incorporated into planar, neutral phospholipid/decane bilayers (200 mM NaCl, 10 mM HEPES-NaOH, pH 7.0). Blocking events generally appeared as periods of seconds to minutes in which current through the single channel was completely eliminated. A notable exception was seen for the substitution Arg-13-Gln for which the "blocked" events showed measurable conductances of about 20-40% of the open state. The substitution of Arg-13 reduced binding to electroplax membranes to undetectable levels and increased the apparent dissociation constant determined for skeletal muscle channels by greater than 80-fold compared with the native peptide. Other substitutions caused smaller decreases in affinity. The decreased potency of the toxin derivatives resulted both from increases in the rates of dissociation from the channel, and from decreases in association rates. Our data support the suggestion by Sato et al. [(1991) J. Biol. Chem. 265, 16989] that Arg-13 associates intimately with the binding site on the channel. In addition, our results suggest that certain residues affect almost exclusively the approach and docking of the toxin with its binding site, others appear to be important only to the strength of the association once binding has taken place, and yet others affect both.
The addition of palmitate to cysteine residues enhances the hydrophobicity of proteins, and consequently their membrane association. Here we have investigated whether this type of fatty acylation also regulates protein-protein interactions. GAP43 is a neuronal protein that increases guanine nucleotide exchange by heterotrimeric G proteins. Two cysteine residues near the N-terminus of GAPF43 are subject to pahmitoylation, and are necessary for membrane binding as well as for Go activation. N-terminal peptides, which include these cysteines, stimulate Go. Monopalmitoylation reduces, and dipalmitoylation aboliUshes the activity of the peptides. The activity of GAP43 protein purified from brain also is reversibly blocked by palmitoylation. This suggests that palmitoylation controls a cycle of GAP43 between an acylated, membrane-bound reservoir of inactive GAP43, and a depalmitoylated, active pool of protein.
Batterham et al. report that the gut peptide hormone PYY3-36 decreases food intake and body-weight gain in rodents, a discovery that has been heralded as potentially offering a new therapy for obesity. However, we have been unable to replicate their results. Although the reasons for this discrepancy remain undetermined, an effective anti-obesity drug ultimately must produce its effects across a range of situations. The fact that the findings of Batterham et al. cannot easily be replicated calls into question the potential value of an anti-obesity approach that is based on administration of PYY3-36.
Various lipopeptides representing the N-terminal part of the cytochrome subunit of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas virdis were prepared by solid-phase peptide synthesis. These lipopeptides consisted of a S-[2,3-dihydroxypropyl]-cysteinyl (Dhc) residue N-terminally coupled to the nonapeptide FEPPPATTT. Different numbers of palmitoyl (Pam) chains were attached to Dhc via ester and/or amide bonds. The lipopeptide Dhc(Pam)2-FEPPPATTT containing two ester-bonded palmitoyl residues and a free N-terminus was a potent polyclonal activator of murine (BALB/c) spleen cells at subnanomolar concentrations. The lipopeptide Pam-Dhc(Pam)2-FEPPPATTT containing three palmitoyl residues, the two-chain lipopeptide Pam-Dhc(Pam)-FEPPPATTT containing one amide- and one ester-bonded palmitoyl residue, and the N-terminally elongated lipopeptide SLVAG-Dhc(Pam)2-FEPPPATTT were less active. The nonapeptide FEPPPATTT and the decapeptide Dhc-FEPPPATTT were only marginal splenocyte activators, even at concentrations as high as 1 microM. Thus, lipopeptide Dhc(Pam)2-FEPPPATTT constitutes the first potent splenocyte stimulation Dhc-lipopeptide described so far that contains only two fatty acid residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.