All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17 beta, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.
In the pig, appearance of endometrial glands between birth (postnatal day [PND] 0) and PND 14 involves development of estrogen receptor-alpha-positive (ER+) phenotype by, and increased DNA synthesis in, nascent glandular epithelium (GE). To determine whether ER activation is required for this process, gilts were treated daily with either vehicle, the antiestrogen ICI 182,780 (ICI), estradiol-17beta valerate (EV), or both ICI and EV. Treatments began on PND 0, before onset of adenogenesis, or on PND 7, after onset of gland proliferation. Uteri obtained on PNDs 7 and 14 (study one) or on PND 14 (study two) were weighed; uterine histology was evaluated; DNA synthesis in luminal epithelium and GE was characterized by determining 5-bromo-2'-deoxyuridine (BrdU) labeling index; and patterns of ER mRNA expression were evaluated in situ (study one). Gland genesis was inhibited by ICI, which decreased gland penetration depth by PND 14 in study one, both endometrial thickness and BrdU-labeling index in GE in study two, and increased stromal cell compaction in both studies. Uterotropic effects of EV included increased gland development and epithelial BrdU labeling and decreased stromal compaction. These effects were inhibited by coadministration of ICI. Treatments did not alter ER mRNA expression, which remained limited to stroma and GE. Data indicate that endometrial maturation and adenogenesis in the neonatal pig require expression and activation of a functional ER system.
In the pig, estradiol-17beta valerate (EV) exposure from birth (Postnatal Day [PND] 0) disrupts estrogen receptor-alpha (ER)-dependent uterine development and increases embryo mortality in adults. To determine effects of neonatal EV exposure on adult uterine morphology and function, 36 gilts received corn oil (CO) or EV from PND 0 to PND 13. Cyclic and pregnant (PX) adults from each treatment group were hysterectomized on Day 12 after estrus/mating. Treatment and pregnancy effects were determined for uterine weight and horn volume, uterine luminal fluid (ULF) protein and estradiol content, endometrial incorporation of 3H-leucine (3H-Leu) into nondialyzable product, and endometrial mRNA levels for ER, progesterone receptor (PR), uteroferrin (UF), retinol-binding protein (RBP), and keratinocyte growth factor (KGF). Adults cycled normally and had similar numbers of corpora lutea. Uteri of PX gilts contained tubular/filamentous conceptuses, and ULF estradiol content was unaffected by treatment. However, pregnancy increased uterine weight and size only in CO gilts (Treatment x Status, P < 0.01). Treatment reduced ULF protein content (P < 0.01), endometrial 3H-Leu incorporation (P < 0.05), and the pregnancy-associated increase in ULF protein (Treatment x Status, P < 0.01). Treatment did not affect endometrial ER or PR mRNA levels but attenuated the pregnancy-associated increase in UF mRNA (Treatment x Status; P < 0.01), increased RBP (P < 0.10), and decreased KGF mRNA levels (P < 0.05). These results establish that transient postnatal estrogen exposure affects porcine uterine responsiveness to potentially embryotrophic signals and that estrogen-sensitive postnatal uterine organizational events are determinants of uterine size and functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.