This article presents the performance evaluation of distribution static compensators (DSTATCOM) for the 180 km 33 kV line from Shinyanga to Bariadi in Tanzania. First, the voltage drop existing on the line is explained, and its negative consequences are mentioned. Secondly, the 180 km line is presented in the nominal 𝜋 model. Then, DSTATCOM capacitive and inductive dynamic ranges of ±1900 kVAr are calculated based on the system fault level. Using the energy storage of five cycles, a DC capacitor with a value of 0.19 mF is calculated. The DSTATCOM is designed using the voltage source converters (VSC) employing the neutral point clamped (NPC) topology. A proportional integral (PI) control algorithm was implemented to the DSTATCOM. Simulation of the modeled system of the feeder with DSTATCOM is carried out in MATLAB/Simulink environment for different loading conditions (light and heavy loading) to evaluate the steady-state performance. Simulation results reveal that for the light load of 0.45 MW, the receiving end voltage is 37.2 kV RMS and 31.5 kV RMS, before and after application of DSTATCOM, respectively. For the heavy load of 4.5 MW, the results are 28.45 kV RMS and 33.1 kV RMS, before and after application of DSTATCOM, respectively. The frequency-domain analysis reveals a gain margin of infinity implying stable system operation. The Nyquist plot shows no encirclement of the negative one point, further verifying the stability. It is concluded that the proposed DSTATCOM is capable of keeping both the voltage drop and rise of the line at acceptable levels for system stability of the Shinyanga-Bariadi feeder.
This paper looks at environmental effects associated with power generation from coal energy source. The paper also sheds some light on the characteristics of coal power sources and environmental effects generated by coal power generation processes. And lastly corresponding mitigation measures are presented followed by conclusion and recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.