BackgroundWild barley is adapted to highly diverse environments throughout its geographical distribution range. Transcriptome sequencing of differentially adapted wild barley ecotypes from contrasting environments contributes to the identification of genes and genetic variation involved in abiotic stress tolerance and adaptation.ResultsTwo differentially adapted wild barley ecotypes from desert (B1K2) and Mediterranean (B1K30) environments were analyzed for drought stress response under controlled conditions. The desert ecotype lost more water under both irrigation and drought, but exhibited higher relative water content (RWC) and better water use efficiency (WUE) than the coastal ecotype. We sequenced normalized cDNA libraries from drought-stressed leaves of both ecotypes with the 454 platform to identify drought-related transcripts. Over half million reads per ecotype were de novo assembled into 20,439 putative unique transcripts (PUTs) for B1K2, 21,494 for B1K30 and 28,720 for the joint assembly. Over 50% of PUTs of each ecotype were not shared with the other ecotype. Furthermore, 16% (3,245) of B1K2 and 17% (3,674) of B1K30 transcripts did not show orthologous sequence hits in the other wild barley ecotype and cultivated barley, and are candidates of ecotype-specific transcripts. Over 800 unique transcripts from each ecotype homologous to over 30 different stress-related genes were identified. We extracted 1,017 high quality SNPs that differentiated the two ecotypes. The genetic distance between the desert ecotype and cultivated barley was 1.9-fold higher than between the Mediterranean ecotype and cultivated barley. Moreover, the desert ecotype harbored a larger proportion of non-synonymous SNPs than the Mediterranean ecotype suggesting different demographic histories of these ecotypes.ConclusionsThe results indicate a strong physiological and genomic differentiation between the desert and Mediterranean wild barley ecotypes and a closer relationship of the Mediterranean to cultivated barley. A significant number of novel transcripts specific to wild barley were identified. The higher SNP density and larger proportion of SNPs with functional effects in the desert ecotype suggest different demographic histories and effects of natural selection in Mediterranean and desert wild barley. The data are a valuable genomic resource for an improved genome annotation, transcriptome studies of drought adaptation and a source of new genetic markers for future barley improvement.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-995) contains supplementary material, which is available to authorized users.
In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminis f. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Wild barley Hordeum spontaneum (L.) shows a wide geographic distribution and ecological diversity. A key question concerns the spatial scale at which genetic differentiation occurs and to what extent it is driven by natural selection. The Levant region exhibits a strong ecological gradient along the North-South axis, with numerous small canyons in an East-West direction and with small-scale environmental gradients on the opposing North-and South-facing slopes. We sequenced 34 short genomic regions in 54 accessions of wild barley collected throughout Israel and from the opposing slopes of two canyons. The nucleotide diversity of the total sample is 0.0042, which is about two-thirds of a sample from the whole species range (0.0060). Thirty accessions collected at 'Evolution Canyon' (EC) at Nahal Oren, close to Haifa, have a nucleotide diversity of 0.0036, and therefore harbor a large proportion of the genetic diversity. There is a high level of genetic clustering throughout Israel and within EC, which roughly differentiates the slopes. Accessions from the hot and dry South-facing slope have significantly reduced genetic diversity and are genetically more distinct from accessions from the North-facing slope, which are more similar to accessions from other regions in Northern Israel. Statistical population models indicate that wild barley within the EC consist of three separate genetic clusters with substantial gene flow. The data indicate a high level of population structure at large and small geographic scales that shows isolation-by-distance, and is also consistent with ongoing natural selection contributing to genetic differentiation at a small geographic scale.
Northern areas of the western United States are one of the most productive wheat growing regions in the United States. Increasing productivity through breeding is hindered by several biotic stresses which slow and constrain targeted yield improvement. In order to understand genetic variation for stripe rust (Puccinia striiformis f. sp. tritici), Septoria tritici blotch (Mycosphaerella graminicola), and Hessian fly (Mayetiola destructor) in regional germplasm, a panel of 408 elite spring wheat lines was characterized and genotyped with an Illumina 9K wheat single nucleotide polymorphism (SNP) chip to enable genome-wide association study (GWAS) analyses. Significant marker-trait associations were identified for stripe rust (38 loci), Septoria tritici blotch (8) and Hessian fly (9) resistance. Many of the QTL corresponded with previously reported gene locations or QTL, but we also discovered new resistance loci for each trait. We validated one of the stripe rust resistance loci detected by GWAS in a bi-parental mapping population, which confirmed the detection of Yr15 in the panel. This study elucidated well-defined chromosome regions for multiple pest resistances in elite Northwest germplasm. Newly identified resistance loci, along with SNPs more tightly linked to previously reported genes or QTL will help future breeding and marker assisted selection efforts.
Perennial cereal crops could limit the negative impacts of agriculture on the environment and climate change. In cold temperate climates, perennial plants must be adapted to seasonal changes and abiotic stresses, such as frost, to be able to regrow for several years. Wild crop relatives that are perennials and already adapted to cold temperate climates may provide genetic resources for breeding new perennial cereal grain crops. Barley (Hordeum vulgare) is one of the most important cereals in northern agricultural areas, and its related perennial species may be good candidates for the development of perennial cereals. We evaluated a diverse set of 17 wild perennial Hordeum species represented by 67 accessions in field conditions with a cold winter climate and long days during summer in Central Sweden (latitude 60 • N). Six species (H. brevisubulatum, H. bulbosum, H. fuegianum, H. jubatum, H. lechleri and H. secalinum) showed regrowth and formation of spikes for four seasons. The most distant perennial relative of barley, H. stenostachys, showed weak regrowth. H. bulbosum, the closest perennial barley relative, had a large number of accessions with wide geographic origins that showed good regrowth. Together with its storage bulbs and its cross-compatibility with barley, this makes H. bulbosum an important genetic resource for the development of perennial Hordeum grains using either the domestication or the wide-hybridization strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.