We acquired coincident marine controlled source electromagnetic (CSEM), high‐resolution seismic reflection and ocean‐bottom seismometer (OBS) data over an active pockmark in the crest of the southern part of the Vestnesa Ridge, to estimate fluid composition within an underlying fluid‐migration chimney. Synthetic model studies suggest resistivity obtained from CSEM data can resolve gas or hydrate saturation greater than 5% within the chimney. Acoustic chimneys imaged by seismic reflection data beneath the pockmark and on the ridge flanks were found to be associated with high‐resistivity anomalies (+2–4 Ωm). High‐velocity anomalies (+0.3 km/s), within the gas‐hydrate stability zone (GHSZ) and low‐velocity anomalies (−0.2 km/s) underlying the GHSZ, were also observed. Joint analysis of the resistivity and velocity anomaly indicates pore saturation of up to 52% hydrate with 28% free gas, or up to 73% hydrate with 4% free gas, within the chimney beneath the pockmark assuming a nonuniform and uniform fluid distribution, respectively. Similarly, we estimate up to 30% hydrate with 4% free gas or 30% hydrate with 2% free gas within the pore space of the GHSZ outside the central chimney assuming a nonuniform and uniform fluid distribution, respectively. High levels of free‐gas saturation in the top part of the chimney are consistent with episodic gas venting from the pockmark.
S U M M A R YThe Arctic continental margin contains large amounts of methane in the form of methane hydrates. The west Svalbard continental slope is an area where active methane seeps have been reported near the landward limit of the hydrate stability zone. The presence of bottom simulating reflectors (BSRs) on seismic reflection data in water depths greater than 600 m suggests the presence of free gas beneath gas hydrates in the area. Resistivity obtained from marine controlled source electromagnetic (CSEM) data provides a useful complement to seismic methods for detecting shallow hydrate and gas as they are more resistive than surrounding water saturated sediments. We acquired two CSEM lines in the west Svalbard continental slope, extending from the edge of the continental shelf (250 m water depth) to water depths of around 800 m. High resistivities (5-12 m) observed above the BSR support the presence of gas hydrate in water depths greater than 600 m. High resistivities (3-4 m) at 390-600 m water depth also suggest possible hydrate occurrence within the gas hydrate stability zone (GHSZ) of the continental slope. In addition, high resistivities (4-8 m) landward of the GHSZ are coincident with high-amplitude reflectors and low velocities reported in seismic data that indicate the likely presence of free gas. Pore space saturation estimates using a connectivity equation suggest 20-50 per cent hydrate within the lower slope sediments and less than 12 per cent within the upper slope sediments. A free gas zone beneath the GHSZ (10-20 per cent gas saturation) is connected to the high free gas saturated (10-45 per cent) area at the edge of the continental shelf, where most of the seeps are observed. This evidence supports the presence of lateral free gas migration beneath the GHSZ towards the continental shelf.
The Vestnesa Ridge marks the northern boundary of a known submarine gas hydrate province in the west Svalbard margin. Several seafloor pockmarks at the eastern segment of the ridge are sites of active methane venting. Until recently, seismic reflection data were the main tool for imaging beneath the ridge. Coincident controlled source electromagnetic (CSEM), high-resolution two-dimensional (2-D) airgun, sweep frequency SYSIF, and three-dimensional (3-D) p-cable seismic reflection data were acquired at the south-eastern part of the ridge between 2011 and 2013. The CSEM and seismic data contain profiles across and along the ridge, passing several active and inactive pockmarks. Joint interpretation of resistivity models obtained from CSEM and seismic reflection data provides new information regarding the fluid composition beneath the pockmarks. There is considerable variation in transverse resistance and seismic reflection characteristics of the gas hydrate stability zone (GHSZ) between the ridge flanks and chimneys beneath pockmarks. Layered seismic reflectors on the flanks are associated with around 300 Xm 2 transverse resistance, whereas the seismic reflectors within the chimneys exhibit amplitude blanking and chaotic patterns. The transverse resistance of the GHSZ within the chimneys vary between 400 and 1200 Xm 2 . Variance attributes obtained from the 3-D p-cable data also highlight faults and chimneys, which coincide with the resistivity anomalies. Based on the joint data interpretation, widespread gas hydrate presence is likely at the ridge, with both hydrates and free gas contained within the faults and chimneys. However, at the active chimneys the effect of gas likely dominates the resistive anomalies.Plain Language Summary Active methane venting was observed at several seafloor locations at the south-eastern segment of the Vestnesa Ridge in the west Svalbard margin. New geophysical data acquired in the area between 2011 and 2013 provide new constraints at understanding potential factors enabling the active venting in the area. High levels of free gas is inferred beneath the locations of known vents based on the joint analysis of multiple geophysical datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.