Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were collected over a long period of time remains problematic due to systematic variability between LC-MS measurements. Until now, most normalization methods for LC-MS data are model-driven, based on internal standards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS metabolomics experiments, which do not require the use of internal standards. According to variability measures, each normalization method performs relatively well, showing that the use of any normalization method will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic variability between two measurement blocks over time and maintains the differential metabolites. In conclusion, normalization allows for pooling datasets from different measurement blocks over time and increases the statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments. From our investigation, we recommend data-driven normalization methods over model-driven normalization methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best option to normalize datasets from untargeted LC-MS experiments.
Anaemia is a condition in which the haemoglobin concentration falls below an established cut-off value due to a decrease in the number and size of red blood cells. The current study aimed (i) to assess the spatial pattern and (ii) to identify determinants related to anaemia using the third Ethiopian demographic health survey. To achieve these objectives, this study took into account the sampling weight and the clustered nature of the data. As a result, multilevel modeling has been used in the statistical analysis. The analysis included complete cases from 15,909 females, and 13,903 males. Among all subjects who agreed for hemeoglobin test, 5.22% males, and 16.60% females were anemic. In both binary and ordinal outcome modeling approaches, educational level, age, wealth index, BMI and HIV status were found to be significant predictors of anaemia prevalence. Furthermore, this study applied spatial methods to generate maps at regional level which could be useful for policy makers where great efforts should be concentrated to reduce the prevalence of anaemia. As revealed by Moran’s I test, significant spatial autocorrelation were noted across clusters. The risk of anaemia was found to vary across different regions, and higher prevalences were observed in Somali and Affar regions.
Malaria remains one of the most prevalent infectious diseases in the tropics and subtropics, and Mozambique is not an exception. To design geographically targeted and effective intervention mechanisms of malaria, an up-to-date map that shows the spatial distribution of malaria is needed. This study analyzed 2018 Mozambique Malaria Indicator Survey using geostatistical methods to: i) explore individual, household, and community-level determinants of malaria in under-five children, ii) prepare a malaria prevalence map in Mozambique, and iii) produce prediction prevalence maps and exceedence probability across the country. The results show the overall weighted prevalence of malaria was 38.9% (N = 4347, with 95% CI: 36.9%–40.8%). Across different provinces of Mozambique, the prevalence of malaria ranges from 1% in Maputo city to 57.3% in Cabo Delgado province. Malaria prevalence was found to be higher in rural areas, increased with child’s age, and decreased with household wealth index and mother’s level of education. Given the high prevalence of childhood malaria observed in Mozambique there is an urgent need for effective public health interventions in malaria hot spot areas. The household determinants of malaria infection that are identified in this study as well as the maps of parasitaemia risk could be used by malaria control program implementers to define priority intervention areas.
The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020 and by November 14, 2020 there were 53.3M confirmed cases and 1.3M reported deaths in the world. In the same period, Ethiopia reported 102K cases and 1.5K deaths. Effective public health preparedness and response to COVID-19 requires timely projections of the time and size of the peak of the outbreak. Currently, Ethiopia under the COVAX facility has begun vaccinating high risk populations but due to vaccine supply shortages and the absence of an effective treatment, the implementation of NPIs (non-pharmaceutical interventions), like hand washing, wearing face coverings or social distancing, still remain the most effective methods of controlling the pandemic as recommended by WHO. This study proposes a modified Susceptible Exposed Infected and Recovered (SEIR) model to predict the number of COVID-19 cases at different stages of the disease under the implementation of NPIs at different adherence levels in both urban and rural settings of Ethiopia. To estimate the number of cases and their peak time, 30 different scenarios were simulated. The results indicated that the peak time of the pandemic is different in urban and rural populations of Ethiopia. In the urban population, under moderate implementation of three NPIs the pandemic will be expected to reach its peak in December, 2020 with 147,972 cases, of which 18,100 are symptomatic and 957 will require admission to an Intensive Care Unit (ICU). Among the implemented NPIs, increasing the coverage of wearing masks by 10% could reduce the number of new cases on average by one-fifth in urban-populations. Varying the coverage of wearing masks in rural populations minimally reduces the number of cases. In conclusion, the models indicate that the projected number of hospital cases during the peak time is higher than the Ethiopian health system capacity. To contain symptomatic and ICU cases within the health system capacity, the government should pay attention to the strict implementation of the existing NPIs or impose additional public health measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.