The performance of an Artificial Neural Network (ANN)-based algorithm is subject to the way the feature data is extracted. This is a common issue when applying the ANN to indoor fingerprinting-based localization where the signal is unstable. To date, there is not adequate feature extraction method that can significantly mitigate the influence of the receiver signal strength indicator (RSSI) variation that degrades the performance of the ANN-based indoor fingerprinting algorithm. In this work, a wavelet scattering transform is used to extract reliable features that are stable to small deformation and rotation invariant. The extracted features are used by a deep neural network (DNN) model to predict the location. The zeroth and the first layer of decomposition coefficients were used as features data by concatenating different scattering path coefficients. The proposed algorithm has been validated on real measurements and has achieved good performance. The experimentation results demonstrate that the proposed feature extraction method is stable to the RSSI variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.