Huntingtin proteolysis has been implicated in the molecular pathogenesis of Huntington disease (HD). Despite an intense effort, the identity of the pathogenic smallest N-terminal fragment has not been determined. Using a panel of anti-huntingtin antibodies, we employed an unbiased approach to generate proteolytic cleavage maps of mutant and wild-type huntingtin in the HdhQ150 knock-in mouse model of HD. We identified 14 prominent N-terminal fragments, which, in addition to the fulllength protein, can be readily detected in cytoplasmic but not nuclear fractions. These fragments were detected at all ages and are not a consequence of the pathogenic process. We demonstrated that the smallest fragment is an exon 1 huntingtin protein, known to contain a potent nuclear export signal. Prior to the onset of behavioral phenotypes, the exon 1 protein, and possibly other small fragments, accumulate in neuronal nuclei in the form of a detergent insoluble complex, visualized as diffuse granular nuclear staining in tissue sections. This methodology can be used to validate the inhibition of specific proteases as therapeutic targets for HD by pharmacological or genetic approaches. Huntington disease (HD)2 is an inherited neurodegenerative disorder with onset in midlife for which symptoms include motor disturbances, personality changes, and cognitive decline (1). The mutation is a CAG/polyglutamine (polyQ) repeat expansion located at the N terminus of huntingtin (Htt), a protein of many diverse functions (2, 3). Individuals with (CAG) 35 or less remain unaffected, those with (CAG) 40 and above will develop HD within a normal lifespan, whereas repeats above (CAG) 70 will invariably cause childhood onset.Mouse models of HD include transgenic mice that express either N-terminal fragments of, or full-length human Htt, and the more genetically precise knock-in models, in which mutant CAG repeats have been inserted into the mouse Hd gene (Hdh) (1). R6/2 mice expressing mutant exon 1 Htt (4) exhibit an early onset and rapid progression of HD-related phenotypes, which have allowed extensive complementary analyses and enabled this model to be used as a screening tool. In our colony, nuclear inclusions can be readily detected by immunohistochemistry in the cerebral cortex, striatum, and hippocampus by 3 weeks of age (5, 6), Rotarod impairment is apparent by 6 weeks, and end-stage disease occurs at 15 weeks. The HdhQ150 knock-in mouse carries ϳ150Q (7). In our homozygous HdhQ150 (Hdh Q150/Q150 ) colony, nuclear inclusions were detected by immunohistochemistry in the striatum and hippocampus by 6 months and the cortex by 8 months, an impaired Rotarod performance was apparent by 18 months of age, and end stage disease occurs at around 22 months (8). Our recent comparison of R6/2 and Hdh Q150/Q150 mice at late stage disease (standardized for strain background and CAG repeat size) found that both models exhibit widespread and comparable phenotypes (8 -10). Nuclear inclusions and neuropil aggregates were distributed throughout all regions of the...
Inhibition of the Wnt antagonist sclerostin increases bone mass in patients with osteoporosis and in preclinical animal models. Here we show increased levels of the Wnt antagonist Dickkopf-1 (DKK-1) in animals treated with sclerostin antibody, suggesting a negative feedback mechanism that limits Wnt-driven bone formation. To test our hypothesis that co-inhibition of both factors further increases bone mass, we engineer a first-in-class bispecific antibody with single residue pair mutations in the Fab region to promote efficient and stable cognate light–heavy chain pairing. We demonstrate that dual inhibition of sclerostin and DKK-1 leads to synergistic bone formation in rodents and non-human primates. Furthermore, by targeting distinct facets of fracture healing, the bispecific antibody shows superior bone repair activity compared with monotherapies. This work supports the potential of this agent both for treatment and prevention of fractures and offers a promising therapeutic approach to reduce the burden of low bone mass disorders.
Elevated serum levels of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) are found in patients with phosphate wasting diseases and chronic kidney disease-mineral and bone disorder (CKD-MBD). These diseases are associated with rickets and renal osteodystrophy, respectively. FGF23 is secreted from osteoblastic cells and signals through FGFRs, membrane coreceptor alpha-Klotho (Klotho), and, possibly, a circulating form of Klotho. Despite the absence of detectable Klotho on osteoblastic cells, studies have suggested that forced FGF23 expression in osteoblasts inhibited mineralization. Thus, we examined the effects of exogenously applied FGF23 on osteoblastic MC3T3.E1 cell proliferation and differentiation, with and without soluble Klotho. MC3T3.E1 cells were cultured in osteoblast differentiation medium, supplemented with FGF23 (0.1–1,000 ng/mL), Klotho (50 ng/mL), the combination FGF23 + Klotho, and FGF2 (100 ng/mL) as a control. Neither FGF23 nor Klotho exposure affected proliferation of day 4 growth phase cells or mineralization of day 14 cultures. In contrast, FGF23 + Klotho resulted in inhibition of mineralization and osteoblast activity markers at day 14, and a slight, reproducible induction of proliferation. Inhibition of FGFR1, but not FGFR2 or FGFR3, completely restored FGF23 + Klotho-induced inhibition of alkaline phosphatase (ALP) activity at day 7. ALP activity was partially restored by the MAPK inhibitor U0126 but not inhibitors p38 and P13K. Thus, soluble Klotho enables FGF23 signaling in MC3T3.E1 cells, likely through FGFR 1(IIIc). Elevated FGF23 actions, in part, appear to parallel FGF2 with lower potency. In addition to affecting bone via indirect phosphate wasting pathways, supraphysiological FGF23 and soluble Klotho may directly impact bone in diseases with elevated FGF23 levels.
We have constructed transgenic Drosophila melanogaster lines that express green f luorescent protein (GFP) exclusively in the nervous system. Expression is controlled with transcriptional regulatory elements present in the 5 f lanking DNA of the Drosophila Na ؉ ,K ؉ -ATPase -subunit gene Nervana2 (Nrv2). This regulatory DNA is fused to the yeast transcriptional activator GAL4, which binds specifically to a sequence motif termed the UAS (upstream activating sequence). Drosophila lines carrying Nrv2-GAL4 transgenes have been genetically recombined with UAS-GFP (S65T) transgenes (Nrv2-GAL4؉UAS-GFP) inserted on the same chromosomes. We observe strong nervous system-specific f luorescence in embryos, larvae, pupae, and adults. The GFP f luorescence is sufficiently bright to allow dynamic imaging of the nervous system at all of these developmental stages directly through the cuticle of live Drosophila. These lines provide an unprecedented view of the nervous system in living animals and will be valuable tools for investigating a number of developmental, physiological, and genetic neurobiological problems.
GPR103 is a G-protein-coupled receptor with reported expression in brain, heart, kidney, adrenal gland, retina, and testis. It encodes a 455-amino-acid protein homologous to neuropeptide FF2, neuropeptide Y2, and galanin GalR1 receptors. Its natural ligand was recently identified as 26RFa, a novel human RF-amide-related peptide with orexigenic activity. To identify the function of GPR103, we generated GPR103-deficient mice. Homozygous mutant mice were viable and fertile. Their body weight was undistinguishable from that of their wild-type littermates. Histological analysis revealed that GPR103 ؊/؊ mice exhibited a thinned osteochondral growth plate, a thickening of trabecular branches, and a reduction in osteoclast number, suggestive of an early arrest of osteochondral bone formation. Microcomputed tomography confirmed the reduction in trabecular bone and connective tissue densities in GPR103 knockout animals. Whole-body radiography followed by morphometric analysis revealed a kyphosis in mutant animals. Reverse transcription-PCR analysis showed that GPR103 was expressed in human skull, mouse spine, and several osteoblast cell lines. Dexamethasone, a known inhibitor of osteoblast growth and inducer of osteoblast differentiation, inhibited GPR103 expression in human osteoblast primary cultures. Altogether, these results suggest that osteopenia in GPR103 ؊/؊ mice may be mediated directly by the loss of GPR103 expression in bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.