Digital watermarking has been suggested as a way to achieve digital protection. The aim of digital watermarking is to insert the secret data into the image without significantly affecting the visual quality. This study presents a robust block-based image watermarking scheme based on the singular value decomposition (SVD) and human visual system in the discrete wavelet transform (DWT) domain. The proposed method is considered to be a block-based scheme that utilises the entropy and edge entropy as HVS characteristics for the selection of significant blocks to embed the watermark, which is a binary watermark logo. The blocks of the lowest entropy values and edge entropy values are selected as the best regions to insert the watermark. After the first level of DWT decomposition, the SVD is performed on the low-low sub-band to modify several elements in its U matrix according to predefined conditions. The experimental results of the proposed scheme showed high imperceptibility and high robustness against all image processing attacks and several geometrical attacks using examples of standard and real images. Furthermore, the proposed scheme outperformed several previous schemes in terms of imperceptibility and robustness. The security issue is improved by encrypting a portion of the important information using Advanced Standard Encryption a key size of 192-bits (AES-192).
Authenticating medical images using watermarking techniques has become a very popular area of research, and some works in this area have been reported worldwide recently. Besides authentication, many data-hiding techniques have been proposed to conceal patient's data into medical images aiming to reduce the cost needed to store data and the time needed to transmit data when required. In this paper, we present a new hybrid watermarking scheme for DICOM images. In our scheme, two well-known techniques are combined to gain the advantages of both and fulfill the requirements of authentication and data hiding. The scheme divides the images into two parts, the region of interest (ROI) and the region of non-interest (RONI). Patient's data are embedded into ROI using a reversible technique based on difference expansion, while tamper detection and recovery data are embedded into RONI using a robust technique based on discrete wavelet transform. The experimental results show the ability of hiding patient's data with a very good visual quality, while ROI, the most important area for diagnosis, is retrieved exactly at the receiver side. The scheme also shows some robustness against certain levels of salt and pepper and cropping noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.