The ability of intraperiplasmic and attack phase bdellovibrios to survive and/or grow under anoxic and microaerobic conditions was examined. Both halotolerant and nonhalotolerant bdellovibrio strains were examined. In all instances, the bdellovibrio strains were unable to grow under anoxic conditions, but were able to survive for periods of time in both the extracellular and intraperiplasmic forms. However, the intraperiplasmic organisms were observed to survive longer. Increased temperature hastened the loss of viability of both forms of the predatory bacteria in oxic and anoxic environments. Under microaerobic conditions, halotolerant bdellovibrios were observed to grow, although at a slightly reduced rate than in atmospheric oxygen, while two nonhalotolerant isolates survived but did not grow. The ability of attack phase bdellovibrios to survive in an anoxic environment for up to nine days and their growth or survival under microaerobic conditions greatly expands the possible ecological niches in which the predators may be active members of the microbial community.
Recent studies suggest that surfaces are a more conducive habitat than the water column for the proliferation of bdellovibrios in the aquatic environment. The effect of temperature and salinity on the colonization of bdellovibrios on oyster shell, glass, and polystyrene surfaces in situ was investigated over an annual cycle. Sterile surfaces were suspended in various bodies of water for intervals ranging from 24 to 120 h. The results revealed that bdellovibrios associated with different types of surfaces over a broad temperature and salinity range. After 24 h of submersion in waters with temperatures from 9.0 to 26.7؇C, the ranges in log 10 values per square centimeter for the three surfaces were as follows: oyster shell, 2.2 to 2.5; glass, 0.3 to 2.2; and polystyrene, 0.7 to 1.6. Bdellovibrios were not recovered from surfaces submerged in water at temperatures below 8؇C during the 120-h experimental cycle. The number of bdellovibrios and culturable bacteria on oyster shells was significantly higher than the numbers on glass and polystyrene at all time intervals. The number of bdellovibrios was positively correlated with temperature and salinity on all surfaces. A positive correlation between the number of recoverable bacteria and temperature was observed, but the results with respect to salinity were diverse. The numbers of bdellovibrios recovered from oyster shells (up to 48 h) and water samples were significantly increased at salinities greater than 11‰ compared to those in lower-salinity environments. The results of this study reveal that like many other bacteria in the aquatic environment, bdellovibrios prefer to associate with surfaces. This association provides the predators a rich source of prey bacteria in surface biofilms and perhaps protection in the gel-like matrix of the biofilm. Bdellovibrio bacteriovorus is a small (0.2-m), commashaped, gram-negative, predatory procaryote which obligately preys on many gram-negative bacteria (6, 16, 17, 21). The characteristic lethal attack by bdellovibrios on prey bacteria has generated interest in its impact on bacterial mortality in nature and its potential as a biological control agent. However, the low numbers of bdellovibrios typically recovered from the water column and sediment (25, 27), the sites most often studied, have established some doubt about the influence of the predators on populations of bacteria in the aquatic environment. In response, it has been suggested that both the number and activity of the bdellovibrios may be higher in habitats other than bulk water and sediments (13). Recent studies have revealed that greater numbers of the predators occur at the air-water and solid-water interfaces (24, 29). Surface colonization may be an important strategy in the ecology (28) of the bdellovibrios and an important mechanism of their survival in the aquatic environment, especially oligotrophic waters. The surface biofilm matrix offers these predators large numbers of potential prey bacteria and perhaps some protection from environmental forces, thus ma...
Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1β and TNF-α production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS ofP. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1β and TNF-α in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1β was not detected in untreated THP-1 cells. IL-1β production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1β production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1β-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1β mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1β transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-α production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral endotoxin following GM-CSF therapy, as evidenced by production of the tissue-reactive cytokines IL-1β and TNF-α.
The Bacteriovorax, previously in the genus Bdellovibrio, are prokaryotes that prey upon many Gram-negative bacteria. They are ubiquitous in salt-water environments and have been reported to have a strong association with biofilms. The purpose of this study was to test the hypothesis that this association affords protection for the Bacteriovorax and enhances their survival in nature when exposed to extreme environmental conditions. Experiments were designed to compare their survival in biofilms versus in suspension when exposed to extremes in salinity and temperature. Natural mixed-population biofilms generated in moderate-salinity (16 per thousand) Patuxent River water and containing Bacteriovorax were exposed to drastic changes in salinity by placing in low-salinity (1 per thousand) river water and salt-free (no measurable salinity) distilled water for up to 14 days. In a separate trial, the biofilm was exposed to extremes in temperature, 5 degrees C and 35 degrees C, for up to 12 weeks in aquarium mesocosms. Simultaneously, suspensions of the Bacteriovorax were exposed to the same extremes in salinity and temperature as biofilms. The results revealed that the Bacteriovorax typically were able to survive for a week or longer while in association with biofilms than when in suspension. These results are consistent with observations from nature and establish that biofilms are important in the survival and ecology of the Bacteriovorax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.