Agents that are safe, affordable, and efficacious are urgently needed for the prevention of chronic diseases such as cancer. Sesamin, a lipid-soluble lignan, is one such agent that belongs to a class of phytoestrogens, isolated from sesame (Sesamum indicum), and has been linked with prevention of hyperlipidemia, hypertension, and carcinogenesis through an unknown mechanism. Because the transcription factor NF-κB has been associated with inflammation, carcinogenesis, tumor cell survival, proliferation, invasion, and angiogenesis of cancer, we postulated that sesamin might mediate its effect through the modulation of the NF-κB pathway. We found that sesamin inhibited the proliferation of a wide variety of tumor cells including leukemia, multiple myeloma, and cancers of the colon, prostate, breast, pancreas, and lung. Sesamin also potentiated tumor necrosis factor-α-induced apoptosis and this correlated with the suppression of gene products linked to cell survival (e.g., Bcl-2 and survivin), proliferation (e.g., cyclin D1), inflammation (e.g., cyclooxygenase-2), invasion (e.g., matrix metalloproteinase-9, intercellular adhesion molecule 1), and angiogenesis (e.g., vascular endothelial growth factor). Sesamin downregulated constitutive and inducible NF-κB activation induced by various inflammatory stimuli and carcinogens, and inhibited the degradation of IκBα, the inhibitor of NF-κB, through the suppression of phosphorylation of IκBα and inhibition of activation of IκBα protein kinase, thus resulting in the suppression of p65 phosphorylation and nuclear translocation, and NF-κB-mediated reporter gene transcription. The inhibition of IκBα protein kinase activation was found to be mediated through the inhibition of TAK1 kinase. Overall, our results showed that sesamin may have potential against cancer and other chronic diseases through the suppression of a pathway linked to the NF-κB signaling. Mol Cancer Res; 8(5); 751-61. ©2010 AACR.
The essential oil from fresh and dried rhizomes of Hedychium coronarium on GC-MS analysis resulted in the identification of 44 and 38 constituents representing 93.91% and 95.41%, respectively. The major components of the essential oil from fresh and dried Hedychium coronarium rhizome were 1,8-cineole (41.42%, 37.44%), beta-pinene (10.39%, 17.4%) and alpha-terpineol (8.8%, 6.7%). The aromatic oil has antifungal as well as antibacterial effects. The antimicrobial activities of the essential oil were individually evaluated against four microorganisms, including two bacteria and two fungi. It was found that the antimicrobial activity was higher in the fresh sample than the dried. Both samples showed a better activity against Trichoderma sp. and Candida albicans than against the bacteria Bacillus subtilis and Pseudomonas aeruginosa.
XIAP is an important antiapoptotic protein capable of conferring resistance to cancer cells. Embelin, the small molecular inhibitor of XIAP, possesses wide spectrum of biological activities with strong inhibition of nuclear factor kappa B and downstream antiapoptotic genes. However, the mechanism of its cell death induction is not known. Our studies using colon cancer cells lacking p53 and Bax suggest that both lysosomes and mitochondria are prominent targets of embelin-induced cell death. Embelin induced cell-cycle arrest in G(1) phase through p21, downstream of p53. In the absence of p21, the cells are sensitized to death in a Bax-dependent manner. The loss of mitochondrial membrane potential induced by embelin was independent of Bax and p53, but lysosomal integrity loss was strongly influenced by the presence of p53 but not by Bax. Lysosomal role was further substantiated by enhanced cathepsin B activity noticed in embelin-treated cells. p53-dependent lysosomal destabilization and cathepsin B activation contribute for increased sensitivity of p21-deficient cells to embelin with enhanced caspase 9 and caspase 3 activation. Cathepsin B inhibitor reduced cell death and cytochrome c release in embelin-treated cells indicating lysosomal pathway as the upstream of mitochondrial death signaling. Deficiency of cell-cycle arrest machinery renders cells more sensitive to embelin with enhanced lysosomal destabilization and caspase processing emphasizing its potential therapeutic importance to address clinical drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.