Flexible strain sensors based on 2D materials have been proven effective for wearable health monitoring devices, human motion detection, and fitness applications. These sensors are flexible, light, and user-friendly, but their sensitivity and detection range need to be enhanced. Among many 2D materials, MXene attracts much interest due to its remarkable properties, such as high electrical conductivity, excellent mechanical properties, flexibility, and good hydrophilicity. However, it is a challenge to fabricate strain sensors with extreme sensitivity and a wide sensing range. In this work, a multifunctional, cost-effective, and highly sensitive PDMS-encapsulated MXene@polyester fabric strain sensor was fabricated. Firstly, complete adsorption of MXene within the fabric formed conductive networks, and then PDMS was used to endow superhydrophobicity and corrosion resistance. The strain sensor demonstrated multifunctional applications and outstanding performance, such as long-term stability (over 500 cycles) and a wide sensing range (8%). The proposed sensor has promising potential for wearable electronic devices such as health monitoring systems and physiological sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.