Arsenic is a toxic metalloid widespread in nature. Recently, it has been demonstrated a main role of the transcription factor Pho4 in the acquisition of tolerance to arsenic-derived compounds, arsenite and arsenate in Candida albicans. Here, the effect of these compounds on this pathogenic yeast has been analyzed. In wild type cells, both arsenite and arsenate induced a marked increase in the endogenous production of Reactive Oxygen Species (ROS), together with the accumulation of intracellular trehalose and the activation of catalase, suggesting their role as generators of oxidative stress in this yeast. However, a pho4 null mutant showed a minor increase of intracellular ROS and a different kinetics of catalase activation upon exposure to arsenite and arsenate. Interestingly, the enzymatic activity of glutathione reductase and superoxide dismutase were exclusively triggered by arsenite but not by arsenate. pho4 mutant cells were also found to be sensitive to azide but significantly resistant to arsenate through a process dependent on an active electron transport chain and the alternative oxidase system. Therefore, arsenic-derived compounds induce a strong antioxidant response in C.albicans via different mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.