In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The results corroborate earlier findings with phenacetin. The similar pattern shown by the drugs studied suggests that the nonlinear enthalpy-entropy compensation effect may be characteristic of the solubility of semipolar drugs in dioxane-water mixtures.
A modification of the extended Hildebrand equation is proposed to estimate the solubility of an organic drug in solvent mixtures. The equation accurately reproduces the solubility of four sulphonamides in dioxane-water mixtures without requiring the heat of fusion of the solute. A single equation is obtained for predicting the solubility of related drugs using the solubilities of the drugs in the pure solvents, dioxane and water, and solute-solvent interaction terms consisting of the solubility parameter, delta 2, of the solute and the solubility parameter, delta 1, and basic partial solubility parameter, delta 1b, of the solvent mixture. By this procedure a single equation was obtained to estimate the solubilities of three xanthines in dioxane-water and another equation to obtain the solubilities of four sulphonamides. The equation obtained for sulphonamides is able to predict the experimental solubilities of two parent compounds, sulphasomidine and sulphathiazole, and the solubilities of a drug of different structure, p-hydroxybenzoic acid. This suggests that the intermolecular solute-solvent interaction of sulphonamides and p-hydroxybenzoic acid are similar. The results indicate that the solubility behaviour of drugs having different structures may be modelled using a common equation provided that they show similar solute-solvent interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.