Excessive and untimely maintenance prompts economic losses and unnecessary workload. Therefore, predictive maintenance models are developed to estimate the right time for maintenance. In this study, predictive models that estimate the remaining useful life of turbofan engines have been developed using deep learning algorithms on NASA’s turbofan engine degradation simulation dataset. Before equipment failure, the proposed model presents an estimated timeline for maintenance. The experimental studies demonstrated that the stacking ensemble learning and the convolutional neural network (CNN) methods are superior to the other investigated methods. While the convolution neural network (CNN) method was superior to the other investigated methods with an accuracy of 93.93%, the stacking ensemble learning method provided the best result with an accuracy of 95.72%.
With prognostic activities, it is possible to predict the remaining useful life (RUL) of industrial systems with high accuracy by following the current health status of devices. In this study, we have collected 199 articles on predictive maintenance and remaining useful life. The aim of our systematic mapping study is to determine which techniques and methods are used in the areas of predictive maintenance and remaining useful life. Another thing we aim is to give an idea about the main subject to the researchers who will work in this field. We created our article repository by searching databases such as IEEE and Science Direct with certain criteria and classified the articles we obtained. By applying the necessary inclusion and exclusion criteria in the article pool we collected, the most appropriate articles were determined and our study was carried out through these articles. When we focused on the results, it was learned that the SupportVector Machine algorithm is the most preferred predictive maintenance method. Most studies aimed at evaluating the performance and calculating the accuracy of the results used the Root Mean Square Error algorithm. In our study, every method and algorithm included in the articles are discussed. The articles were examined together with the goals and questions we determined, and results were obtained. The obtained results are explained and shown graphically in the article. According to the results, it is seen that the topics of predictive maintenance and remaining useful lifetime provide functionality and financial gain to the environment they are used in. Our study was concluded by light on many questions about the application of predictive maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.