A collection of families (Fthere is no pair i = j for which some F i ∈ F i is comparable to some F j ∈ F j . Two natural measures of the 'size' of such a family are the sum k i=1 |F i | and the product k i=1 |F i |. We prove new upper and lower bounds on both of these measures for general n and k ≥ 2 which improve considerably on the previous best bounds. In particular, we construct a rich family of counterexamples to a conjecture of Gerbner, Lemons, Palmer, Patkós, and Szécsi from 2011.
Given a graph H, we say that an edge-coloured graph G is H-rainbow saturated if it does not contain a rainbow copy of H, but the addition of any non-edge in any colour creates a rainbow copy of H. The rainbow saturation number rsat(n, H) is the minimum number of edges among all H-rainbow saturated edge-coloured graphs on n vertices. We prove that for any non-empty graph H, the rainbow saturation number is linear in n, thus proving a conjecture of Girão, Lewis, and Popielarz. In addition, we also give an improved upper bound on the rainbow saturation number of the complete graph, disproving a second conjecture of Girão, Lewis, and Popielarz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.