Continuous monitoring of vector species composition, abundance, dynamics, feeding pattern, and host finding strategy is the base to determine when, what, and how control should be implemented. Thus, this study was conducted to assess entomological parameters of anopheline mosquitoes in nine villages in Seka district, southwestern Ethiopia, from June to December 2012. Mosquito collection was carried out from selected households in each of the nine study villages using light trap catches from June to December 2012. Differences in mean mosquito density, parity rates before, and after indoor residual spraying (IRS) operation were compared. In total, 1,136 adult female anopheline mosquitoes were collected during the study period. All anopheline mosquitoes collected belong to three species. Anopheles gambiae senso lato Giles was the most predominant (69.7%) followed by Anopheles coustani s.l. Laveran (22.7%) and Anopheles pharoensis Theobald (7.6%). There was significant variation in mean mosquito density among An. gambiae s.l., An. coustani s.l., and An. pharoensis. Parity rate of An. gambiae s.l. before spray operation was significantly higher than after spray operation. The highest peak biting activity of An. gambiae s.l. was between 1800 and 2100 hours. The longevity of An. gambiae s.l. ranged from 3.4 to 12.5 d. The highest vector abundance and parity rate were recorded in July and August. In conclusion, the behavioral plasticity and early biting activity of An. gambiae s.l. could affect current vector control tools (IRS and long lasting insecticidal nets). Hence, it is imperative to explore intervention tools for outdoor malaria vector control in addition to the existing IRS and long-lasting insecticidal nets.
Background Irrigation schemes may result in subsequent changes in malaria disease dynamics. Understanding the mechanisms and effects of irrigation on malaria vector bionomics and transmission intensity is essential to develop new or alternative surveillance and control strategies to reduce or control malaria risk. This study was designed to assess the effect of rice irrigation on malaria vector bionomics and transmission intensity in the Gambella Region, Ethiopia. Methods Comparative cross-sectional study was conducted in Abobo District of the Gambella Region, Ethiopia. Accordingly, clusters (kebeles) were classified into nearby and faraway clusters depending on their proximity to the irrigation scheme. Adult mosquito survey was conducted in February, August and November 2018 from three nearby and three faraway clusters using Centers for Disease Control and Prevention (CDC) light traps (LTs). During the November survey, human landing catch (HLC) and pyrethrum spray catch (PSC) were also conducted. The collected mosquitoes were morphologically identified to species and tested for Plasmodium infection using circumsporozoite protein enzyme-linked immunosorbent assay (CSP-ELISA). Furthermore, species-specific polymerase chain reaction (PCR) was performed to identify member species of the Anopheles gambiae complex. Chi-square and t-tests were used to analyze the data using the SPSS version 20 software package. Results A total of 4319 female anopheline mosquitoes comprising An. gambiae sensu lato, An. funestus group, An. pharoensis, An. coustani complex and An. squamosus were collected. Overall, 84.5% and 15.5% of the anopheline mosquitoes were collected from the nearby and faraway clusters, respectively. Anopheles gambiae s.l. was the predominant (56.2%) anopheline species in the area followed by An. pharoensis (15.7%). The density of anopheline mosquitoes was significantly higher in the nearby clusters in both HLCs [t(3) = 5.14, P = 0.0143] and CDC LT catches [t(271.97) = 7.446, P < 0.0001). The overall sporozoite rate of anopheline species from the nearby clusters was 10-fold higher compared to the faraway clusters. Conclusions Significantly higher mosquito population density was observed in areas close to the irrigation sites. Sporozoite infection rate in the mosquito population was also markedly higher from the nearby clusters. Therefore, the irrigation scheme could increase the risk of malaria in the area. Graphical abstract
Background Land use change has increasingly been expanding throughout the world in the past decades. It can have profound effects on the spatial and temporal distribution of vector borne diseases like malaria through ecological and habitat change. Understanding malaria disease occurrence and the impact of prevention interventions under this intense environmental modification is important for effective and efficient malaria control strategy. Methods A descriptive ecological study was conducted by reviewing health service records at Abobo district health office. The records were reviewed to extract data on malaria morbidity, mortality, and prevention and control methods. Moreover, Meteorological data were obtained from Gambella region Meteorology Service Center and National Meteorology Authority head office. Univariate, bivariate and multivariate analysis techniques were used to analyze the data. Results For the twelve-year time period, the mean annual total malaria case count in the district was 7369.58. The peak monthly malaria incidence was about 57 cases per 1000 people. Only in 2009 and 2015 that zero death due to malaria was recorded over the past 12 years. Fluctuating pattern of impatient malaria cases occurrence was seen over the past twelve years with an average number of 225.5 inpatient cases. The data showed that there is a high burden of malaria in the district. Plasmodium falciparum (Pf) was a predominant parasite species in the district with the maximum percentage of about 90. There was no statistically significant association between season and total malaria case number (F3,8: 1.982, P:0.195). However, the inter-annual total case count difference was statistically significant (F11,132: 36.305, p < 0001). Total malaria case count had shown two months lagged carry on effect. Moreover, 3 months lagged humidity had significant positive effect on total malaria cases. Malaria prevention interventions and meteorological factors showed statistically significant association with total malaria cases. Conclusion Malaria was and will remain to be a major public health problem in the area. The social and economic impact of the disease on the local community is clearly pronounced as it is the leading cause of health facility visit and admission including the mortality associated with it. Scale up of effective interventions is quite important. Continuous monitoring of the performance of the vector control tools needs to be done.
Background Despite notable progress in the control and prevention of malaria in the Horn of Africa, the disease continues to cause significant morbidity and mortality in various regions of Ethiopia, and elsewhere in the region. The transmission of malaria is affected by genetic, sociocultural, and ecological factors. Lare is an Ethiopian district adjacent to the Ethio-South Sudan border, in Gambella region. The region currently has the highest prevalence of malaria in Ethiopia. This study assesses the burden and spatiotemporal patterns of disease transmission, including the effect of climatic factors on the occurrence of malaria, across an international border crossing. This understanding can assist in crafting informed programmatic and policy decisions for interventions. Methods This study was conducted in Lare district, Southwest Ethiopia, a temperate zone. A retrospective descriptive analysis was conducted using clinical service data collected between 2011 and 2021 from the 9 health facilities of the district. Both clinically diagnosed patients and those identified using microscopy and rapid diagnostic testing (RDT) were included in the study. Additionally, climate data was incorporated into analyses. Examples of analyses include malaria burden, positivity rate, incidence, species frequency, and an ANOVA to assess inter-annual case number and meteorological factor variation. Results Between 2011 and 2021, a total of 96,616 suspected malaria cases were tested by microscopy or RDT, and 39,428 (40.8%) of these cases were reported as positive. There were 1276 patients admitted with 22 deaths recorded. There were further more significant fluctuations in positivity rates across years, the highest being 74.5% in 2021. Incidence varied from 18.0% in 2011 to 151.6% in 2016. The malaria parasite species most detected was Plasmodium falciparum, followed by a smaller proportion of Plasmodium vivax. The greatest proportions of P. falciparum cases were observed in 2018 and 2019, at 97.4% and 97.0% prevalence, respectively. There was significant seasonal variation in case number, the highest observed in July through September of each year. Climatic conditions of annual rainfall, temperature and humidity favored the increment of malaria cases from June until October. Conclusion The study shows that the burden, i.e. morbidity and mortality (with fluctuating patterns) of malaria are still significant public health problems and can pose serious consequences in the district. This has implication for cross-border malaria transmission risk due to considerable border crossings. The predominant cause of the disease is P. falciparum, which causes severe complications in patients. The district has to prepare to deal with such complications for better patient care and outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.