This research aims on the development of one efficient and feasible robotic vehicle for spraying inside a greenhouse and evaluation of its navigation system. The proposed system makes its movements by the left and right side motors, and the guidance was provided by ultrasonic sensors. A proportional control mechanism was implemented for continuous and real-time operations of the robotic unit. Such a system uses the 'range information' collected by sensors, so the unit can complete its movement between aisles. A u-shaped path with width and length of 0.98 m and 13.93 m, respectively, was selected for validation experiments. The greenhouse has a concrete floor; the unit was moved in three different speeds (7, 14, 21 m min −1). In general, the feasibility of the proposed robotic unit was approved, since it moved successfully in every required path. The RMSE of robotic unit movements' accuracy was placed between 5.22 and 6.38 at different speeds.
This study investigates the potential of using a sprayer robot for the greenhouse with bell-pepper plants and compares its performance with the backpack sprayer. The infrared sensors were used to navigate the robot and the ultrasonic sensors were used to distinguish the beginning of each row for automatic spraying. Results showed that the robot's guidance was done well by the infrared sensor. It was capable for spraying plants on both sides of the greenhouse simultaneously with ultrasonic sensor. The sprayer robot had better spray quality and lower solution consumption and spraying time and spray loss than the backpack sprayer.
A solar heating system is designed to reduce energy consumption in a poultry farm. According to the physics and conditions of the indoor environment of the poultry building and the effect of the poultry weather conditions, the amount of 1.37 × 108 kJ/h during the year energy is required for heating. Then, by using double-glazed windows and insulation for the exterior walls of the building in the building architecture section, the amount of energy consumption is drastically reduced, and the required annual gas consumption is equal to 11,833 m3. The surface required for the collector is recommended to supply 50% of the energy from the sun with the rest from the hybrid system. The results showed that 26 m2 of a solar collector with an optimal slope of 45 degrees, and a tank volume of 440 L and a pump discharge of 1700 kg/h are required to provide 100% of energy. To receive the maximum amount of solar energy (maximum solar fraction (SF)), a collector surface equal to 30 m2 is required. However, when the economic point of view is considered, the collector surface equivalent to 26 m2 is recommended. To establish a balance, that is, 50% of the energy from the auxiliary system and the rest from the solar system, between the use of solar energy and the use of the auxiliary system, a collector area of 16 m2 is needed. Based on this, 60 photovoltaic modules, which are 10 cells in series in 6 parallel circuits, is the most optimal mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.