This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47–48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR < 0.1 and fold-change A/U > 1.3 or < 0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens.
BackgroundImprovements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably “hard” or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as “Wooden Breast”, through the use of RNA-sequencing technology.MethodsWe constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways.ResultsOver 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested “Diseases and Disorders” such as connective tissue disorders, “Molecular and Cellular Functions” such as cellular assembly and organization, cellular function and maintenance, and cellular movement, “Physiological System Development and Function” such as tissue development, and embryonic development, and “Top Canonical Pathways” such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease.ConclusionsThere is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1623-0) contains supplementary material, which is available to authorized users.
Wooden Breast Disease (WBD), a myopathy that frequently affects modern broiler chickens, is a disorder that has been associated with significant economic losses in the poultry industry. To examine tissue changes associated with the onset and early pathogenesis of this disorder, a time-series experiment was conducted using chickens from a high-breast-muscle-yield, purebred commercial broiler line. Birds were raised for up to seven weeks, with a subset of birds sampled weekly. Breast muscle tissues were extracted at necropsy and processed for analysis by light microscopy and transmission electron microscopy. Histologic presentation indicated localized phlebitis with lipogranulomas in Week 1, focal single-myofibril degeneration in Week 2 preceding an inflammatory response that started in Week 3. Lesions in Week 4 were characterized by multifocal to diffuse muscle fibre degeneration, necrosis, interstitial oedema accompanied by increased lipid and inflammatory cell infiltration. Lesions in Weeks 5-7 revealed diffuse muscle degeneration, necrosis, fibrosis and fatty infiltration with lipogranulomas. Ultrastructural examination showed myofibrillar splitting and degeneration, irregular, displaced and degenerated Z-lines, mitochondrial degeneration and interstitial fibrosis with dense regular collagen fibres. This study, therefore, demonstrates that WBD exhibits an earlier onset in modern broilers than when detectable by clinical examination. Further, this study shows that the disease assumes a progressive course with acute vasculitis, lipid deposition and myodegeneration occurring in the earlier stages, followed by a chronic fibrotic phase.
Methods for mapping QTL are actively used in the chicken to identify chromosomal regions contributing to variation in traits related to growth, disease resistance, egg production, behavior, and metabolic parameters. However, higher-resolution mapping and better knowledge of the genetic architecture underlying QTL are needed for successful application of this information into breeding programs. Therefore, this paper summarizes and integrates original, primary QTL studies in the chicken to identify basic information on the genetic architecture of quantitative traits in chickens. The results of this review show several instances of consensus of QTL locations for similar traits from independent studies. Furthermore, the consensus of QTL location for different traits and evidence for QTL with parent-of-origin effect, transgressive alleles, epistatic QTL, and QTL x sex interaction in chicken are presented and discussed. This information can be helpful in identifying genes or mutations underlying the QTL and in the application of genomic information in marker-assisted breeding programs.
Wooden Breast Disease (WBD), a myopathy in commercial broiler chickens characterized by abnormally firm consistency of the pectoral muscle, impacts the poultry industry negatively due to severe reduction in meat quality traits. To unravel the molecular profile associated with the onset and early development of WBD in broiler chickens, we compared time-series gene expression profiles of Pectoralis (P.) major muscles between unaffected and affected birds from a high-breast-muscle-yield, purebred broiler line. P. major biopsy samples were collected from the cranial and caudal aspects of the muscle belly in birds that were raised up to 7 weeks of age (i.e. market age). Three subsets of biopsy samples comprising 6 unaffected (U) and 10 affected (A) from week 2 (cranial) and 4 (caudal), and 4U and 11A from week 3 (cranial) were processed for RNA-sequencing analysis. Sequence reads generated were processed using a suite of bioinformatics programs producing differentially expressed (DE) genes for each dataset at fold-change (A/U or U/A) >1.3 and False Discovery Ratio (FDR) <0.05 (week 2: 41 genes; week 3: 618 genes and week 4: 39 genes). Functional analysis of DE genes using literature mining, BioDBnet and IPA revealed several biological processes and pathways associated with onset and progress of WBD. Top among them were dysregulation of energy metabolism, response to inflammation, vascular disease and remodeling of extracellular matrix. This study reveals that presence of molecular perturbations involving the vasculature, extracellular matrix and metabolism are pertinent to the onset and early pathogenesis of WBD in commercial meat-type chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.