In this paper, distribution of peeling stress in two types of adhesively-bonded joints is investigated. The joints are a single strap and a stiffened joint. Theses joints are under uniform tensile load and materials are assumed orthotropic. Layers can be identical or different in mechanical or geometrical properties. A twodimensional elasticity theory that includes the complete stressstrain and the complete strain-displacement relations for adhesive and adherends is used in this analysis. The displacement is assumed to be linear in the adhesive layer. A set of differential equations was derived and solved by using appropriate boundary conditions. Results revealed that the peak peeling stress developed within the adhesive layer is a function of geometrical and mechanical properties. FEM solution is used as the second method to verify the analytical results. A good agreement is observed between analytical and FEM solutions.
In this paper, an adhesively-bonded stepped-lap joint suffering from a void within its adhesive layer is investigated. The void separates the layer into two sections. The joint is under tensile load and materials are isotropic and assumed to behave as linear elastic. Classical elasticity theory is used to determine shear stress distribution in the separated sections of adhesive layer along the overlap length. A set of differential equations was derived and solved by using appropriate boundary conditions. Finite element solution was used as the second method to verify the obtained results by analytical method. A two-dimensional model was created in ANSYS and meshed by PLANE elements. A good agreement was observed between two methods of solutions. Results revealed that the stepped-lap joint performed better in stress distribution with a void rather than single-lap and double-lap joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.