25 26A long-standing conceptual model for deep submarine eruptions is that high hydrostatic pressure 27 hinders degassing and acceleration, and suppresses magma fragmentation. The 2012 submarine 28 rhyolite eruption of Havre volcano in the Kermadec arc provided constraints on critical 29 parameters to quantitatively test these concepts. This eruption produced a > 1 km 3 raft of floating 30 pumice and a 0.1 km 3 field of giant (>1 m) pumice clasts distributed down-current from the vent. 31We address the mechanism of creating these clasts using a model for magma ascent in a conduit. 32We use water ingestion experiments to address why some clasts float and others sink. We show 33 that at the eruption depth of 900 m, the melt retained enough dissolved water, and hence had a 34 low enough viscosity, that strain-rates were too low to cause brittle fragmentation in the conduit, 35 despite mass discharge rates similar to Plinian eruptions on land. There was still, however, 36 enough exsolved vapor at the vent depth to make the magma buoyant relative to seawater. 37Buoyant magma was thus extruded into the ocean where it rose, quenched, and fragmented to 38 produce clasts up to several meters in diameter. We show that these large clasts would have 39 floated to the sea surface within minutes, where air could enter pore space, and the fate of clasts 40 is then controlled by the ability to trap gas within their pore space. We show that clasts from the 41 raft retain enough gas to remain afloat whereas fragments from giant pumice collected from the 42 seafloor ingest more water and sink. The pumice raft and the giant pumice seafloor deposit were 43 thus produced during a clast-generating effusive submarine eruption, where fragmentation 44 occurred above the vent, and the subsequent fate of clasts was controlled by their ability to ingest 45 water. 46 3 47
In the past two decades, the U.S. Geological Survey and the National Park Service have studied hydrothermal activity across the Yellowstone Plateau Volcanic Field (YPVF) to improve the understanding of the magmatic‐hydrothermal system and to provide a baseline for detecting future anomalous activity. In 2017 and 2018 we sampled water and gas over a large area in the southwest YPVF and used Landsat 8 thermal infrared data to estimate radiative heat flow. Most of the thermal activity in this region is in close proximity to the Yellowstone Caldera boundary. Springs and fumaroles discharge from a variety of lithologies, including some of the youngest rhyolites in the YPVF. Gas compositions and helium isotope ratios of most samples resemble those in other parts of the YPVF. The waters have meteoric origins, and tritium was detected in several samples. Thermal waters from some areas have compositions that plot along a line connecting thermal and nonthermal water endmember compositions. The thermal water endmember equilibrated at 160°C–170°C, lower than waters in Yellowstone's geyser basins. Heat discharged by springs and fumaroles originates from within the Yellowstone Caldera and is transported laterally by advection, mainly along the base of rhyolite flows that cover the inferred caldera boundaries.
Despite its increasing application to estimate magma decompression rates for explosive eruptions, the embayment speedometer has long awaited critical experimental evaluation. We present the first experimental results on the fidelity of natural quartz‐hosted embayments in rhyolitic systems as recorders of magma decompression. We conducted two high pressure‐temperature isobaric equilibrium experiments and 13 constant‐rate, continuous isothermal decompression experiments in a cold‐seal pressure vessel where we imposed rates from 0.005 to 0.05 MPa s−1 in both H2O‐saturated and mixed‐volatile (H2O + CO2)‐saturated systems. In both equilibrium experiments, we successfully re‐equilibrated embayment melt to new fluid compositions at 780°C and 150 MPa, confirming the ability of embayments to respond to and record changing environmental conditions. Of the 32 glassy embayments recovered, seven met the criteria previously established for successful geospeedometry and were thus analyzed for their volatile (H2O ± CO2) concentrations, with each producing a good model fit and recovering close to the imposed decompression rate. In one H2O‐saturated experiment, modeling H2O concentration gradients in embayments from three separate crystals resulted in best‐fit decompression rates ranging from 0.012 to 0.021 MPa s−1, in close agreement with the imposed rate (0.015 MPa s−1) and attesting to the reproducibility of the technique. For mixed‐volatile experiments, we found that a slightly variable starting fluid composition (2.4–3.5 wt.% H2O at 150 MPa) resulted in good fits to both H2O + CO2 profiles. Overall our experiments provide confidence that the embayment is a robust recorder of constant‐rate, continuous decompression, with the model successfully extracting experimental conditions from profiles representing nearly an order of magnitude variation (0.008–0.05 MPa s−1) in decompression rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.