Tungstate (W) is recognized as an agent of environmental pollution and a substitute to depleted uranium. According to some preliminary studies, tungstate toxicity is related to the formation of reactive oxygen species (ROS) under abnormal pathological conditions. The kidneys and liver are the main tungstate accumulation sites and important targets of tungstate toxicity. Since the mitochondrion is the main ROS production site, we evaluated the mechanistic toxicity of tungstate in isolated mitochondria for the first time, following a two‐step ultracentrifugation method. Our findings demonstrated that tungstate‐induced mitochondrial dysfunction is related to the increased formation of ROS, lipid peroxidation, and potential membrane collapse, correlated with the amelioration of adenosine triphosphate and glutathione contents. The present study indicated that mitochondrial dysfunction was associated with disruptive effects on the mitochondrial respiratory chain and opening of mitochondrial permeability transition (MPT) pores, which is correlated with cytochrome c release. Our findings suggest that high concentrations of tungstate (2 mM)‐favored MPT pore opening in the inner membranes of liver and kidney mitochondria of rats. Besides, the results indicated higher tungstate susceptibility in the kidneys, compared with the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.