Phosphorus (P) is an important macronutrient required for plant growth and yield formation. Since decades, breeders aim to optimize P efficiency in crops. We studied a set of 47 wild barley (Hordeum vulgare ssp. spontaneum, Hsp) introgression lines (ILs) in hydroponic culture to identify quantitative trait loci (QTLs) improving growth and nutrient content under P deficiency. Applying a mixed model analysis, a total of 91 independent QTLs were located among 39 ILs, of which 64 QTLs displayed trait‐improving Hsp effects. For example, an unknown Hsp allele on barley chromosome 4H increased shoot dry weight under P deficiency in three overlapping ILs by 25.9%. Likewise, an Hsp allele on barley chromosome 6H increased root dry weight under P deficiency in two overlapping ILs by 27.6%. In total, 31 QTLs confirmed Hsp effects already identified in previous field and glasshouse experiments with the same ILs. We conclude that wild barley contains numerous trait‐improving QTL alleles, which are active under P deficiency. In future, the underlying genes can be subjected to cloning and, simultaneously, used in elite barley breeding.
Winter wheat growing areas in the Northern hemisphere are regularly exposed to heavy frost. Due to the negative impact on yield, the identification of genetic factors controlling frost tolerance (FroT) and development of tools for breeding is of prime importance. Here, we detected QTL associated with FroT by genome wide association studies (GWAS) using a diverse panel of 276 winter wheat genotypes that was phenotyped at five locations in Germany and Russia in three years. The panel was genotyped using the 90 K iSelect array and SNPs in FroT candidate genes. In total, 17,566 SNPs were used for GWAS resulting in the identification of 53 markers significantly associated (LOD ≥ 4) to FroT, corresponding to 23 QTL regions located on 11 chromosomes (1A, 1B, 2A, 2B, 2D, 3A, 3D, 4A, 5A, 5B and 7D). The strongest QTL effect confirmed the importance of chromosome 5A for FroT. In addition, to our best knowledge, eight FroT QTLs were discovered for the first time in this study comprising one QTL on chromosomes 3A, 3D, 4A, 7D and two on chromosomes 1B and 2D. Identification of novel FroT candidate genes will help to better understand the FroT mechanism in wheat and to develop more effective combating strategies.
Winter wheat growing areas in the Northern hemisphere are regularly exposed to heavy frost. Due to the negative impact on yield, the identification of genetic factors controlling frost tolerance (FroT) and development of tools for breeding is of prime importance. Here, we detected QTL associated with FroT by genome wide association studies (GWAS) using a diverse panel of 276 winter wheat genotypes that was phenotyped at five locations in Germany and Russia in three years. The panel was genotyped using the 90K iSelect array and SNPs in FroT candidate genes. In total, 17,566 SNPs were used for GWAS resulting in the identification of 53 markers significantly associated (LOD ≥4) to FroT, corresponding to 23 QTL regions located on 11 chromosomes (1A, 1B, 2A, 2B, 2D, 3A, 3D, 4A, 5A, 5B and 7D). The strongest QTL effect confirmed the importance of chromosome 5A for FroT. In addition, to our best knowledge, seven FroT QTLs were discovered for the first time in this study comprising QTLs on chromosomes 3A, 4A, 1B, and two on chromosomes 2D, 3D, and 7D. Identification of novel FroT candidate genes will help to better understand the FroT mechanism in wheat and to develop more effective combating strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.