The main regulatory factors during the adaptation of cancer cells to hypoxic stress are the hypoxia-inducible factors (HIFs), which are being increasingly recognized as an interesting and challenging target for the design of new chemotherapeutic molecules. HIF2A was found to have an large internal hydrophilic cavity within its PAS-B domain, unique to this sub-unit and is suggested to be a possible ligand-binding site. Regulation of HIF2A by cellular molecules is still greatly unknown. In This paper we have employed in-silico techniques, such as molecular docking and dynamic simulation, to design new direct inhibitors against HIF-2A subunit via targeting one of its critical domains and the final top screened molecules have been tested on hypoxic cancer cells for further validation of their inhibitory potential. we targeted the hydrophilic cavity inside the PAS-B domain of the HIF2A to identify novel molecules with a high binding capacity. Virtual Screening methodology was used for molecular docking of NSC library against the target domain inside the HIF2A PAS-B domain with the top 5% compounds with significant MolDock and Re-rank scores were selected for further analysis. The NSC 106416, NSC 217021, NSC 217026, and NSC 215639 compounds were selected based on their docking scores. NSC 215639 had the minimum polar solvation energy and also had a relative strong binding energy. NSC 217026 had the strongest binding energy among other compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.