Many distributed systems use broadcast communication for various reasons such as saving energy or increasing throughput. However, the actor model for concurrent and distributed systems does not directly support this kind of communication. In such cases, a broadcast must be modeled as multiple unicasts which leads to loss of modularity and state space explosion for any non-trivial system. In this paper, we extend Rebeca, an actor-based model language, to support asynchronous anonymous message broadcasting. Then, we apply counter abstraction for reducing the state space which efficiently bypasses the constructive orbit problem by considering the global state as a vector of counters, one per each local state. This makes the model checking of systems possible without further considerations of symmetry. This approach is efficient for fully symmetric system like broadcasting environments. We use a couple of case studies to illustrate the applicability of our method and the way their state spaces are reduced in size.
Abstract. Wireless ad hoc networks, in particular mobile ad hoc networks (MANETs), are growing very fast as they make communication easier and more available. However, their protocols tend to be difficult to design due to topology dependent behavior of wireless communication, and their distributed and adaptive operations to topology dynamism. Therefore, it is desirable to have them modeled and verified using formal methods. In this paper, we present an actor-based modeling language with the aim to model MANETs. We address main challenges of modeling wireless ad hoc networks such as local broadcast, underlying topology, and its changes, and discuss how they can be efficiently modeled at the semantic level to make their verification amenable. The new framework abstracts the data link layer services by providing asynchronous (local) broadcast and unicast communication, while message delivery is in order and is guaranteed for connected receivers. We illustrate the applicability of our framework through two routing protocols, namely flooding and AODVv2-11, and show how efficiently their state spaces can be reduced by the proposed techniques. Furthermore, we demonstrate a loop formation scenario in AODV, found by our analysis tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.