The activity of the promoter of a metallothionein gene expressed in actinorhizal nodules of Casuarina glauca Sieber ex Spreng., CgMT1, has previously been analysed in Casaurinaceae and in tobacco (Nicotiana tabacum L.), Arabidopsis and rice. In all these plants, the promoter showed high activity in the root cortex and epidermis, making it a useful tool for the expression of transgenes. Therefore, its activity was now analysed in transgenic root systems of Datisca glomerata (C. Presl) Baill, an actinorhizal plant from a different phylogenetic group than C. glauca, using the same CgMT1::GUS fusion as in previous studies. However, in contrast with all other plant species examined previously, the CgMT1::GUS construct showed no activity at all in D. glomerata hairy roots: the expression pattern in nodules resembled that found in C. glauca nodules. This is probably due to the changed hormone balance in hairy roots since experiments on the CgMT1::GUS construct in transgenic Arabidopsis showed that CgMT1 promoter activity was repressed by auxin or cytokinin, respectively. Yet, in hairy roots of the model legume Lotus japonicus L. induced by the same Agrobacterium rhizogenes strain, the CgMT1 promoter was active in roots and not in nodules. These results indicate that although the expression of pRi T-DNA genes leads to changes in root hormone balance, these changes do not abolish the differences in phytohormone levels or sensitivity between plant species. Therefore, gene expression data obtained using transgenic hairy root systems have to be viewed with care, not only due to the disturbed hormone balance, but also because the effects of the pRI-T-DNA genes can differ between species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.