The Kaczmarz method is an iterative algorithm for solving systems of linear equalities and inequalities, that iteratively projects onto these constraints. Recently, Strohmer and Vershynin [J. Fourier Anal. Appl., 15(2):262-278, 2009] gave a non-asymptotic convergence rate analysis for this algorithm, spurring numerous extensions and generalizations of the Kaczmarz method. Rather than the randomized selection rule analyzed in that work, in this paper we instead discuss greedy and approximate greedy selection rules. We show that in some applications the computational costs of greedy and random selection are comparable, and that in many cases greedy selection rules give faster convergence rates than random selection rules. Further, we give the first multi-step analysis of Kaczmarz methods for a particular greedy rule, and propose a provably-faster randomized selection rule for matrices with many pairwise-orthogonal rows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.