Clinical decision support systems are interactive computer systems for situational decision making and can improve decision efficiency and safety of care. We investigated the role of these systems in enhancing prehospital care. This narrative review included full-text articles published since 2000 that were available in databases/e-journals including Web of Science, PubMed, Science Direct, and Google Scholar. Search keywords included "clinical decision support system," "decision support system," "decision support tools," "prehospital care," and "emergency medical services." Non-journal articles were excluded. We revealed 14 relevant studies that used such a support system in prehospital emergency medical service. Owing to the dynamic nature of emergency situations, decision timing is critical. Four key factors demonstrated the ability of clinical decision support systems to improve decision-making, reduce errors, and improve the safety of prehospital emergency activity: computer-based, offer support as a natural part of the workflow, provide decision support in the time and place of decision making, and offer practical advice. The use of clinical decision support systems in prehospital care resulted in accurate diagnoses, improved patient triage and patient outcomes, and reduction of prehospital time. By improving emergency management and rescue operations, the quality of prehospital care will be enhanced.
Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.
IntroductionOccupational injuries as a workforce’s health problem are very important in large-scale workplaces. Analysis and modeling the health-threatening factors are good ways to promote the workforce’s health and a fundamental step in developing health programs. The purpose of this study was ANN modeling of the severity of occupational injuries to determine the health-threatening factors and to introduce a model to predict the severity of occupational injuries.MethodsThis analytical chain study was conducted in 10 large construction industries during a 10-year period (2005–2014). Nine hundred sixty occupational injuries were analyzed and modeled based on feature weighting by the rough set theory and artificial neural networks (ANNs). Two analytical software programs, i.e., RSES and MATLAB 2014 were used in the study.ResultsThe severity of occupational injuries was calculated as 557.47 ± 397.87 days. The findings of both models showed that the injuries’ severity as a health problem resulted in various factors, including individual, organizational, health and safety (H&S) training, and risk management factors, which could be considered as causal and predictive factors of accident severity rate (ASR).ConclusionThe results indicated that ANNs were a reliable tool that can be used to analyze and model the severity of occupational injuries as one of the important health problems in large-scale workplaces. Additionally, the combination of rough set and ANNs is a good and proper chain approach to modeling the factors that threaten the health of workforces and other H&S problems.
Change in cortisol affects brain EEG signals. So, the identification of the significant EEG features which are sensitized to cortisol concentration was the aim of the present study. From 468 participated healthy subjects, the salivary samples were taken to test the cortisol concentration and EEG signal recording was done simultaneously. Then, the subjects were categorized into three classes based on the salivary cortisol concentration (<5, 5–15 and >15 nmol/l). Some linear and nonlinear features extracted and finally, in order to investigate the relationship between cortisol level and EEG features, the following steps were taken on features in sequence: Genetic Algorithm, Neighboring Component Analysis, polyfit, artificial neural network and support vector machine classification. Two classifications were considered as following: state 1 categorized the subjects into three groups (three classes) and the second state put them into two groups (group 1: class 1 and 3, group 2: class 2). The best classification was done using ANN in the second state with the accuracy=94.1% while it was 92.7% in the first state. EEG features carefully predicted the cortisol level. This result is applicable to design the intelligence brain computer machines to control stress and brain performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.