Acute and chronic wounds have varying etiologies and are an economic burden to healthcare systems around the world. The advanced wound care market is expected to exceed $22 billion by 2024. Wound care professionals rely heavily on images and image documentation for proper diagnosis and treatment. Unfortunately lack of expertise can lead to improper diagnosis of wound etiology and inaccurate wound management and documentation. Fully automatic segmentation of wound areas in natural images is an important part of the diagnosis and care protocol since it is crucial to measure the area of the wound and provide quantitative parameters in the treatment. Various deep learning models have gained success in image analysis including semantic segmentation. This manuscript proposes a novel convolutional framework based on MobileNetV2 and connected component labelling to segment wound regions from natural images. The advantage of this model is its lightweight and less compute-intensive architecture. The performance is not compromised and is comparable to deeper neural networks. We build an annotated wound image dataset consisting of 1109 foot ulcer images from 889 patients to train and test the deep learning models. We demonstrate the effectiveness and mobility of our method by conducting comprehensive experiments and analyses on various segmentation neural networks. The full implementation is available at https://github.com/uwm-bigdata/wound-segmentation.
Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. This survey provides a thorough review of the data‐driven 3D shape descriptors from the machine learning point of view and compares them in different criteria. Also, a comprehensive taxonomy of the existing descriptors is proposed based on the exploited machine learning algorithms. Advantages and disadvantages of each category have been discussed in detail. Besides, two alternative categorizations from the data type and the application perspectives are presented. Finally, some directions for possible future research are also suggested.
Wound classification is an essential step of wound diagnosis. An efficient classifier can assist wound specialists in classifying wound types with less financial and time costs and help them decide on an optimal treatment procedure. This study developed a deep neural network-based multi-modal classifier using wound images and their corresponding locations to categorize them into multiple classes, including diabetic, pressure, surgical, and venous ulcers. A body map was also developed to prepare the location data, which can help wound specialists tag wound locations more efficiently. Three datasets containing images and their corresponding location information were designed with the help of wound specialists. The multi-modal network was developed by concatenating the image-based and location-based classifier outputs with other modifications. The maximum accuracy on mixed-class classifications (containing background and normal skin) varies from 82.48 to 100% in different experiments. The maximum accuracy on wound-class classifications (containing only diabetic, pressure, surgical, and venous) varies from 72.95 to 97.12% in various experiments. The proposed multi-modal network also showed a significant improvement in results from the previous works of literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.