Quantum-dot cellular automata (QCA), due to its unique characteristics like low power consumption, nanoscale design, and high computing speed is considered as an emerging technology, and it can be used as an alternative for CMOS technology in circuit design for quantum computers in the near future. XOR gate has many applications in the design of digital circuits in QCA. In this paper, an efficient novel structure of XOR gate is proposed in QCA. Also, a novel 1-bit comparator circuit, 1-bit full adder, binary to gray and gray to binary convertor code based on the proposed XOR is designed and simulated using QCADesigner 2.0.3. The simulation results demonstrated that the proposed structures provide improvements compared to previous works in terms of QCA cells count, area, and circuit cost.
In the design of digital logic circuits, QCA technology is an excellent alternative to CMOS technology. Its advantages over CMOS include low power consumption, fast circuit switching, and nanoscale design. Circuits that convert data between different formats are code converters. Code converters have an essential role in high-performance computing and signal processing. In this paper, first, we proposed a novel QCA structure for the quantum reversible Fredkin gate. Second, we proposed 4-bit and 8-bit QCA binary-to-gray converter and vice versa. For the second proposal, both reversible and irreversible structures are suggested. The proposed structures are scalable up to N bits. To change the conversion type from B2G to G2B, we use a 2:1 QCA multiplexer. The proposed QCA Fredkin is applied in the reversible design of QCA code converters as multiplexers. The suggested designs are simulated using the QCADesigner tool. Then we calculated figures of merit, including cell counts, occupied areas, and clock zones. Finally, we compare the proposed structures to existing research. Our proposed approach is the first quantum-dot cellular automata design to perform B2G conversion and G2B in a single QCA circuit. The proposed designs are scalable. Specifications are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.